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(Asymmetric) Dark Matter Freezeout

Assume we have a DM asymmetry

Asymmetry ηD ≡ Y+ − Y− frozen during freeze-out.
Also define ε ≡ ηD/ηB

Fractional asymmetry

This ratio changes during freezout.

r ≡ Y−

Y+

DM mass relation

MDM =
mp

ε

ΩDM

ΩB

(
1− r∞
1 + r∞

)
- Graesser, Shoemaker, Vecchi 1103.2771; Iminniyaz, Drees, Chen 1104.5548

New here: Sommerfeld enhancement, bound state formation and unitarity
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Vector mediator

L = X̄ (iD/−MDM)X − 1

4
FDµνF

µν
D

X denotes the DM particle
Covariant derivative Dµ = ∂µ + igdV

µ
D

FµνD = ∂µV ν
D − ∂νV

µ
D , with V µ

D being the dark photon field
αD ≡ g2

d/(4π) being the dark fine-structure constant.

If X carries a particle-antiparticle asymmetry, another field is required to
balance the implied U(1)D charge asymmetry in X .
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Vector mediator - Sommerfeld enhancement and bound
state formation

Symmetric case: - von Harling, Petraki 1407.7874

Here σvrel = σ0(S
(0)
ann + SBSF). In the Coulomb limit, S

(0)
ann and SBSF

depend only on the ratio ζ ≡ αD/vrel

S (0)
ann(ζ) =

2πζ

1− e−2πζ
σ0 ≡ πα2

D/M
2
DM

SBSF(ζ) =
2πζ

1− e−2πζ
ζ4

(1 + ζ2)2
29

3
e−4ζ arccot(ζ)

For, vrel . αD , both exhibit the same velocity dependence, σvrel ∝ 1/vrel.
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Scalar mediator

ϕ

ϕ

X

X̄

. . .

L = X̄ (i∂/−MDM)X +
1

2
∂µϕ∂

µϕ− 1

2
m2
ϕϕ

2 − gd ϕX̄X

ϕ is the dark scalar force mediator with mass mϕ

αD ≡ g2
d/(4π).

This is a p-wave process. However, as long as mϕ . αDMDM/2, the X − X̄
interaction manifests as long range. The velocity suppression is lifted due
to the Sommerfeld enhancement!
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Scalar mediator - Sommerfeld enhancement

ϕ

ϕ

X

X̄

. . .

This is a p-wave annihilation process

σannvrel = σ1 v
2
rel S

(1)
ann

σ1 =
3πα2

D

8M2
DM

S (1)
ann(ζ) =

2πζ

1− e−2πζ
(1 + ζ2)

As before, ζ ≡ αD/vrel.

At vrel . αD , σannvrel ∝ 1/vrel.

The v2rel suppression of the perturbative cross-section morphs into an
α2

D suppression, with σannvrel ∝ α5
D .
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Boltzmann Equations - Vector Mediator

Three coupled equations, taking into account Y+ (Y− = Y+ − ηD),
and the two bound states Y↑↓ and Y↑↑.

At some stage T drops enough so bound state decay becomes quicker
than ionization.

Annihilation through the bound state then becomes significant.

We take into account the T difference between the visible and dark
sectors.

Similarly for the scalar mediator but without the bound states.
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Relic abundance - Example
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Required couplings/cross-section - vector mediator
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Required couplings - scalar mediator
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Indirect detection - vector mediator

The effective cross-section for indirect detection signals,

σIDvrel =

[
4r∞

(1 + r∞)2

]
σinelvrel.

We have used vrel = 10−3, which is relevant for indirect searches in the
Milky Way.
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Indirect detection - scalar mediator

The effective cross-section for indirect detection signals,

σIDvrel =

[
4r∞

(1 + r∞)2

]
σinelvrel.

We have used vrel = 10−3, which is relevant for indirect searches in the
Milky Way.
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Unitarity constraint

In the non-relativistic regime

σ
(J)
inel vrel 6 σ

(J)
uni vrel =

4π(2J + 1)

M2
DM vrel

Note that with SE σvrel ∝ 1/vrel, meaning there is no need to insert
an arbitrary vrel on the RHS of the inequality, as would be the case if
naively using σvrel ∼ α2

D/M
2
DM or σvrel ∼ α2

DM
2
DM/m

4
med.

We obtain some αuni above which the unitarity constraint is violated.
However, σvrel is based on a perturbative calculation - the relevant
approximations will break down before this.

The σ
(J)
uni vrel ∝ 1/vrel behaviour indicates that to approach the

unitarity limit, the cross section will necessarily display some long
range 1/vrel behaviour, at least in the types of scenarios explored here.
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Unitarity constraint - Results
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Approaching Unitarity constraint implies a long range
interaction

In the non-relativistic regime

σ
(J)
inel vrel 6 σ

(J)
uni vrel =

4π(2J + 1)

M2
DM vrel

Interaction mediated by a heavy force carrier of mass mmed & MDM.

σvrel ∼ α2
DM

2
DM/m

4
med.

Realising unitarity limit
αuni

D ∼ (mmed/MDM)2/
√
vrel & mmed/MDM & 1.

This implies mmed . αuni
D MDM.

That is range of the interaction between two DM particles, m−1med, is
comparable or larger than their Bohr radius, (αuni

D MDM/2)−1.

Interaction manifests as long-range, thereby contradicting the original
premise of a contact-type interaction.
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Conclusions

Asymmetric DM scenarios require a slightly larger annihilation cross
section.

We have calculated the required αD in some simple example scenarios
including Sommerfeld enhancement and bound state formation.

We have explored the unitarity constraint.

This is a first step needed in order to constrain these models
experimentally.

Thanks.
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