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Motivation

* Goal - compare two of the simplest models with dark matter candidates
- one with scalar dark matter and one with vector dark matter.

* Both models have a new complex scalar singlet. Its real component
mixes with the neutral component from the doublet.

* The models have the same number of particles and the same number of

independent parameters.

* In this case can we distinguish the models experimentally? And if so

how?
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The models

1. Vector Dark Matter (VDM)

Dark U(1)x gauge symmetry: all SM particles are U(1)x neutral.
New complex scalar field - scalar under the SM gauge group but has unit charge under U(1)x.
Lagrangian invariant under

X,—»~-X, S-S

which is just the charge conjugate symmetry in the dark sector. It forbids the kinetic mixing
between the SM gauge boson from U(1)y and the dark one from U(1)x. The Lagrangian is

SZ=ESM—%XWX””+(DﬂS)T(D”S)+,u§ S| =4 |s| -« |s| HH
D,=0,+igxX,

with _
Mpy = 8xVs

G* 1
1 : S=—Wg+S5S+iA)
%(VH+h+lGO) \/5 <h1> _ ( cosa  sina > <h>

h, —sina  cosa/ \S

H =

h is the real doublet component, S is the new real scalar component and A is the Goldstone boson
related with U(1)x .

HAMBYE, JHEP 0901 (2009) 028. LEBEDEV, LEE, MAMBRINI, PLB707 (2012) 570. FARZAN, AKBARIEH; JCAP 1210 (2012)
026. BAEK, Ko, PARK, SENAHA; JHEP 1305 (2013) 036, ...



The models

2. Scalar Dark Matter (SDM)
The SM is extended by an extra complex scalar singlet S which has a global U(1) symmetry
S = €S

Then we softly break this dark U(1) symmetry to the residual Z; symmetry S — —S

L= L+ D,D'S) + 2 |S|" = A |S|" —k |S|” H H+ (4> + 1. c)

with 2Av° KDV 0
M? = | kvvg 24502 0
G 0 0 -4

I
. S=—(g+S+iA
é(vH+h+zG0) (Vs + S5 +14)

\/5 hy _ [ cosa sina h
h, —sina cosa/ \S

h is the real doublet component, S is the new real scalar component and A is the dark matter
candidate. The extra soft breaking term gives mass to A (the dark matter candidate).

H =

SILVEIRA, ZEE; PLB161, 136 (1985). McDONALD; PRD50 (1994) 363736459, ...



The models

VDM: SM + vector dark matter + new scalar

PARTICLE CONTENT
SDM: SM + scalar dark matter + new scalar
INDEPENDENT - ol . . :
Mass of the DM / / ™ Mass of the
particle o second scalar
Mixing angle between
doublet and singlet (real)

Parameter Range

SM-Higgs—m, 125.09 GeV There is obviously a 125 GeV Higgs (other

Second Higgs—m, [1,1000] GeV scalar can be lighter or heavier).

gﬁ;ﬁgﬁv_v [[11’110(%(;] é}e i}/ Experimental and theoretical constraints to

e be discussed next
Mixing angle—a — &1




Constraints
Theoretical and collider:

Points generated with ScannerS requiring

- absolute minimum

- boundedness from below

- that perturbative unitarity holds
-5, Tand U

Signal strength: gives a constraint on the mixing angle a

Searches: BR of Higgs to invisible below 24%

Searches: for extra scalars imposed via HiggsBounds which gives a

bound that is a function of the new scalar mass and cosa



Constraints

DM abundance: we require

(th)DM < 0.1186 [Calculated with MicroOmegas]

or to be in the b0 allowed interval from the Planck collaboration measurement

(Qh%)25 = 0.1186 £ 0.0020

Direct detection: we apply the latest XENONIT bounds

. (Qh%)py,
Gle)J;{/[, v =Jom pun with  fpy = s [Fraction contributing to the scattering]
(Qh2),,,

Indirect detection: for the DM range of interest, the Fermi-LAT upper bound

on the dark matter annihilation from dwarfs is the most stringent. We use the
Fermi-LAT bound on bb.



e Scalar [Under Relic] e Vector [Under Relic] e Scalar [Relic] e Vector [Relic]

No diference between models for most of the
measurable quantities - points from both models
fill the entire parameter space.

@ Scalar [Under Relic] @ Vector [Under Relic] e Scalar [Relic] e Vector [Relic]
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0001}
suppressed) and larger allowed values of sina located £ |
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my [GeV]

But there is a difference

e Scalar [Under Relic] e Vector [Under Relic] e Scalar [Relic] e Vector [Relic]
1000 ¢

, Region where only SDM
survives. In this region,
if we could measure the

DM mass and mz, VDM

AL .;_.;,,-:_:_--{.-. would be excluded.
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The models coexist: kinematical enhancement by the resonance must be compensated
by suppressed couplings that govern DM annihilation in the early Universe.

m, ~ 2mp,, DM annihilation through the non-SM-like resonance #,

m, = 2myp,, DM annihilation through the non-SM-like resonance #,



Where does this difference comes from? - Dark matter
nucleon scattering at tree-level

A AN / g . iszmN VAAlCa VAAZSa -
_ = — — 5 un(py)un(py)
2

vg  \¢*—mi gq*—m

2 2
. SacameN my —mjp 7 —
/\ _lﬂtree ~ =1 . 2m2 q ”N(p4)MN(p2)
HYS 1772

N N GROSS, LEBEDEV, TOMA, PRL119 (2017) NOo.19, 191801

The total cross section for DM-nucleon scattering is

) 2 1,2 ,,0 2 N
DM,N ™~ I m2 212 mim4 DM /’tDM,N - m T m
DM "H"S 17772 DM N
Because vpy ~ 200Km/s = vi ~ 1071 It is a blind "spot” but

for the entire

parameter region!

tree =70 2 XENONIT —46 2
ODMN ™ 1077 cm” <« CDMN ~ 107" cm



So, the difference comes from Direct Detection - it is very restrictive in
VDM and not restrictive at all in SDM. In fact, at tree-level

tree -70 2 XENONIT —-46 2

@ Scalar tree-level [Under Relic] e Scalar tree-level [Relic]
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Line from the XENONIT
experiment.

2
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And what happens at one-loop?
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An estimate of the cross section at one-loop was proposed

) 4 72 4 2 4
slee SN~ a Ny f N MyMpy (m2/ mDM) Mpy = My
PN 6475 mbvg 48 1 Mpyy < My

GROSS, LEBEDEV, TOMA, PRL119 (2017) No.19, 191801



opn-n [cm?]
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The one-loop calculation for SDM model

A A
N 7
N 4
2 2
Y Y ~ . SacameN my —m, 9 —
| Tl Mopree ¥ T 1 ) q-tin(py)un(py)
VygVs mrm
o] %2
1,2 |
N /\N The tree-level amplitude is proportional to g2, this means more than 10

orders of magnitude below the XENONIT bound.
One-loop estimate brings the cross section close to the bound.

In the one-loop calculation we will still work at the nucleon level,
combining the Higgs-quark and Higgs-gluon couplings to a nucleon into a
single Higgs-nucleon-nucleon form factor f\ymy /vy, as we did for the

tree-level diagrams.

we will work in the limit of zero momentum transfer g2 — O in order to
simplify our calculation, which is justified by the fact that the terms
proportional to g2 are suppressed.



Corrections that survive

A A A A A A
‘ Y e
h11h27A "hy, o "hy, ho Jhlvh?
s~ 1 ’ VauN| ’ ’ \\
R . hiho AL ) mm Al w4 Internal scalars
~- e Vi, ho ~-“Vhi,hy \r}; h
N N N N N N
hi,ha, A
A A A A A A A A A A A T A
N 4 hl,hg AN A ‘h a
, MoA a5 NI AN 7 s ha
L NS v ./ AN, A hihs o huyho L .
b Al hahad R T e | | | Vertex corrections
-7 Vha, ho Vha, ho Vha, ha Vha, ho Vhi, ha
L h1,ho | | | | |
N N N N N N N N N N N N
2 2 2
S2a(mMmi — ms)m5

2 92 9 9 9
T 5 Q[Ang(O,mA,mA,ml,m2,mA)

2 2 2 2 2 2 2
+A2D3(Oa 07 M, M4, 07 M, My, M1, My, mA)

2 2 2 2 2 2 2
—|—.A3D3(O, O, A, M A, Oa Mg, My, Mo, My, mA)]

— 2.2 2 2 2.2 2, 2 2 2
A1 = 4(miss, + mses)(2mivgss + 2msvpcs, — mijvgSaa + MavsSaa)

One-loop squared -

Ay = —2misq[(m] + 5m3)vsca — (mi —m3)(vscsa + 4vpsd)] (1) f]2\7 m?\fﬂiN 2
ey, e e AN = — 5 5 F because tree-level
Az = 2mycal(5mi + mi)vgsa — (my — m3)(vsssa + 4vmcy)] - TV Ty

is zero

SEE ALSO, ISHIWATA, TOMA, JHEP 1812 089 (2018)



oan[cm?]

Scalar DM:vs=1TeV, m=300 GeV, sina=0.1 Results for the point presented as a function of

1075 L
é \ the DM mass show that the approximation was
10752 = good (especially in reproducing the shape.
10753
1075 2 mA Sy ms
_55§ ] W 6475 mivy, m308’ ek
107> OAN T 2 4 g2 42
i Sa My fi mymy ma < mo
10—56;, l 6475 mivy 0% -
10757,
1 10 10 100 10t 105 For this set of the parameters the curve has a
ma[GeV] maximum, 6 ~ 3 x 10 ¢cm? for m, ~ 630 GeV.

The corresponding o™ ~ 107¢°-107%° cm?

New blind spots found for:

a) one for m, = m, corresponding to the vanishing of the factor (m:? - m2%) and

b) random - caused by accidental cancellation between loop integrals. The location of this dip varies
with the set of parameters chosen and is a combination of all input parameters, the mass of the
scalars, the angle a and vs .



my [GeV]

And no major changes after the exact
one-loop calculation

e Scalar [Under Relic] e Vector [Under Relic] e Scalar [Relic] e Vector [Relic]

1000 The tree-level AN recoiling amplitude

vanishes in the limit of zero momentum
transfer, the one-loop amplitude and F
should be finite in the same limit.

500 |

100}
s0f In other words, we do not need to
renormalise the model (the set of
diagrams with counterterms only is
zero). Consequently, the sum of all

diagrams has to be finite. .

10}

1 I IR T N SR S S 2 | L ||I:||l I IR TR N T N |
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Since the exact one-loop results lead to cross sections that are below the XenonlT limit, the
plot is exactly the same.



One-loop corrections in the VDM model



One-loop corrections in the VDM model

X
W
X reff _ relf o peff We will now use an effective Lagrangian starting with
S: q - z;z ¢ Tra the interaction of dark matter with quarks and gluons.
| q=u,a,s
s
q
X X X X X X

| i O

[ hj
— T T T ¢ 4
(a) Vertex Corrections (b) Mediator Corrections (¢) Box Corrections

GOODMAN, WITTEN, PRD31 3059 (1985); ELLIS, FLORES,
NPB3017 883 (1988). K. GRIEST, PRL62 666 (1988);
PRD38 2357 (1988); SREDNICKI, WATKINS, PLB225 140
(1989); GIUDICE, ROULET, NPB316 429 (1989); DREES,
NoJIRI, PRD48 3483 (1993)

HILL, SOLON, PRD91 043505 (2015)

HisANO, ISHIWATA, NAGAYA, YAMANAKA, PTP126 435 (2011)
ABE, FUJIWARA, AND HisANO, JHEP 02 028 (2019)

ERTAS, KAHLHOEFER, JHEPOG6 052 (2019)

Loops are calculated - including also CT
diagrams. The result can be written in
terms of the form factors or of the
effective Lagrangian.

Results are translated into interactions
with nucleons using the matrix elements of
the quark and gluon operators in a nucleon

state.



that is,
& Write the effective Lagrangian

ff_ Koy & 9a . p;ou;qv q
eff _ eff eff E?I = foXux"mqqq + 7 X 10"i0 Xpop,ya 1 1
= Lf+LE mg Ot = 31 (9 + 97~ 39) 0.
q=u,d,s erf - fGXpoGZVGaWa

& Define the nucleon matrix elements

<N|quQ|N> = meZ]{
_9;_3 (N|GS, G IN) = [1- Z | my = mn f3 SHIFMAN, VAINSHTEIN, ZAKHAROV, PLB78 443 (1978)
T q=u,d,s
q 1 1 2 N N
<N(p)’ O,ur/ |N(p)> = m_N Pubv — ZmNg;w (q (2) +4q (2)) ,

& And calculate the cross section

1 2
- (&) . fufmn= 3 L+ Y @@ +a" @) gt o
X

q=u.d,s a=u.d,s.c,b

And now we need to get all the Wilson coefficients f,, g, f at NLO, but before that,



Renormalisation of the VDM model

I P T . ol . . :
[INDEPENDENT Mpys SINQ; My, &, —— (replaces Singlet VEV)
PARAMETERS X
Mass of the DM / / ™ Mass of the
particle second scalar

Mixing angle between doublet
and singlet (real)

& Masses and fields are renormalised with on-shell conditions

%2 (p?)
2 T 2
5mX = Re Exx (mx) 02y = _Re# .
p :mX
O h,n; (%) 2 U

¥ The dark coupling is renormalised MS

3

59)(‘6 = 962 e

with A, = % — g + Indm, and g is the Euler-Mascheroni constant.



PILAFTSIS, NPB504, 61 (1997)

€ Mixing angle is renormalised via
KANEMURA, OKADA, SENAHA, YUAN, PRD70 115002 (2004)

KRAUSE, LORENZ, MUHLLEITNER, RS, ZIESCHE, JHEP 1609 143 (2016)

h d :
<h;> = R(a+6a)\/Zs ( (I)I;I) Gauge to mass eigenstates

LVZn
VZg = R(6a) (1 +5ZTTM . +5$Z’LTM> ~ (15(1% fi"%) Expand in the rotation angle
(SZ”T”‘? L 60, +6a  and (SZ"TQ}“ = 50}, — da Using on-shell conditions
- i (6Zn1ny — 6 Znon, )
1

- 2(m2 _ m2 )Re(zhth (m%q) + Ehth (m%g) - 25Th1h2) .
h1 ha




¥ Tried other schemes for the angles, MS and process dependent

ANLO,Weak ; ALO dav = (M—W> [Avirt,weak + ACt‘éa:O}

gm COS &

h—TT h—TT

FREITAS, STOCKINGER, PRD66 095014 (2002)

The uncertainty due to missing higher-order
corrections can be estimated by varying the
renormalisation scheme or by varying the
renormalisation scale.

The comparison with the other two renormalisation
schemes makes no sense as the latter lead to
unacceptably large corrections.

10752 10750 1048 10746 104 10
O'LO [CHIQ]

The variation of the renormalisation scale (for the dark gauge coupling) between 1/2 and 2

times the scale pg in the MS scheme leads to a variation of the NLO cross section of about

16% - in contrast to the unphysical large corrections that are to be traced back to the
blowing-up of the MS counterterm of a.



¥ Vertex corrections yyh. Back to the coefficients

X X X X

ol 1S el (Y S s

X AN ) X : . X Lo X (.

S S T Vo S T
S:{hian} S7vz{hi7GX}y{X} vaz{hivGX}7{X} S,V ={h;},{X}

We write the amplitude as a decay y — yh;to

s X vaxffﬂ . X M extract the relevant terms.
e / 7 S
NA‘//\N‘ I M\J;W Lo
o X e X el S
Vo S hy

" IAY O = Gxni (D) - € (p) = 29ymye(p) - ¥ (p) {
S,V ={hi}, {X} S,V = {h;i}, {X} S,V = {h;}, {X} S = {hi, Gy}

sina, =1

cosa, t=2

Loops are calculated - virtual corrections and CT diagrams are included. CT terms have the same
structure as the tree-level

1 %
‘Ax—>xh1 = [5 (9xxha0Zhshy + Gxxha 0Znyhy) + Gyxha 0 Zxx + 59xxh1} e(p) - " (p)

1 *
Z“4><—>xhz> [5 (9xxh10Zh1hy + Gxxha0Zhshs) + Gxxha0 Zxx + 5g><xh2} e(p) - £(p)

and virtual corrections have two terms

iANLO — ( . )f(pin) . 6*(pOUtZ+ ( .. )Spin . 5*(pout)) (pout : 5(pin)z
~LO ~NLO

And since we work in the approximation that the momentum of the incoming DM particle is equal to the
momentum of the outgoing DM particle, the LO and NLO contributions have the same structure.

FEYNARTS, HAHN, CPC140 418 (2001) FEYNCALC, MERTIG, BOHM, DENNER , CPC64 345 (1991)

SARAH, STAUB, CPC185 1773 (2014) COLLIER, DENNER, DITTMAIER, HOFER, CPC212 220 (2017)



€ Mediator corrections

Again because we are working in the approximation of zero momentum

X X exchange the contribution from the mediators can be written as
’\/\/\/\/\/WV\/\/\/V
 hy
o
[ ~ 2
e Ehihj (p — O)
! ! Ahihy =~ 2 2
My, My,

with .

3 R 07z
(?hlhl ?h1h2> =3(p?) = X(p?) — om® — 6T + — (p* — M?) + (p* — M?) —
Yhohi  Bhohs 2

Projecting the one-loop correction on the corresponding tensor structure we obtain the one-loop correction to the
Wilson coefficient of the operator m,yygq induced by the mediator corrections as

med _ 99x"Mx , , hi\ Py _ [ cosa  sina) [Py
q - 2mW ;Ra’zzRa’ﬂAhihj <h2 = e ®g ) \—sina cosa bg

¢ Box corrections

S S S S s s 3
q q q q q q g F ¢ g F ¢

F, S ={q}, {hi} F, S ={a},{hi,Gx} F, S,V ={q} {hi,Gx} {X} F, S ={q}, {hi} F, S,V ={aq},{hi, Gx}, {X}



€ The NLO EW SI cross section can be obtained using the one-loop form factor

]1\\;LO _ Z fNLOfN+ Z
my - q Ty

8w

_ NLO N ¢NLO
(a(2) +4(2)) g, b — @fTGfGL
q:u,d,s q:U,d,S,C,b

A~ o

with the Wilson coefficients at one-loop given by

fé\TLO _ f(;/ertex + féned + f(})OX

gqNLO — ggow
as
fgLO _ _E Z (f;lertex_i_f;ned) +féop
qg=c,b,t
The LO form factor is given by
. 2 2

Y o N 2 N 1 ggy sin(2a) My, — my,
= = ZfT+Z_fT fa=75 7 3 x>
MmN ! q=u,d,s ! q=c,b,t 277°¢ 2 mw 2 mh1 mhz

And the cross section at one-loop is

1 m ? *
o = 2 () 1T e (3030

q

=u,d,s,c,b,t



50 Wilson coefficient at one-loop as a function of the non-125

30 scalar (in units of GeV~2) with the dark gauge coupling in

2.5 the colour bar.

2.0
QX fé\ILO — f(}/ertex + f;ned + f(‘;)ox (585&)
1.5 gNLO = ghos (5.85b)
NLO _ @S vertex med top
1.0 fERO = =25 T (e gt) + 157 (5.85¢)
q=c,b,t
0.5
0 500 1000 _— NLO
m,, GV Largest contributions come from f,

3.5

0 500 1000




3.5
30 Wilson coefficient at one-loop as a function of the non-125 scalar

o5 (in units of GeV~2) with the dark gauge coupling in the colour bar.

2.0
QX 10—4_ 3.5
1.5 -
10_6 fé\TLO _ f;/ertex + f;ned + f;)ox
1.0 2.5
10°8
0.5 = 2.0 o
S5 10710 <  Largest contribution
. . . - y 1.5
0 500 1000 e to /) comes from
Mg GeV 1.0 t
1014 05 f,°"" but are smaller
than the total.

0 500 1000

Different contributions to the cross section
with LO being the largest followed by the
vertex contribution.

s e oy ~ - J « N
, »‘f“{t ‘:ﬁ .§¢'y§ h
S oL

<
= 1013 |fL| , Even for small g, the vertex contribution
| quERT| ' dominates except for a few points where
10710 e : |f(;OX| mediator take the lead - in those cases the
19 . . . . | fiAEDl ’ LO is larger by several orders of magnitude.
o . o 197
—4 =2 0 2 4



UNLO / ULO

NLO vs. LO results for the VDM model

1060 L - -
0 250 500
m, [GeV]
2.0
0'150—54 10'—51 10'—48 10'—45 10—42
O’LO [sz]

In the plots below we see the enhancement (only) with the dark coupling constant. The ratio between

750

1000

therefore proportional to g,, sin 2a and m}% —

which are proportional to g; at one-loop.

2.5

10L48 .10L45

O'LO [Cm2]

10742

2.5
0.8
2.01
0.6 3 Sb ‘.
@\ NG - ° ..
~ o Lb w'&%
) a®
04: ‘% Zb L B
[ q\’
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0.2 ce L0
0'150—54 10'—51 10'—48 1(3'—45
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NLO and LO increases like g,.

We start with points that at LO have passed all the
theoretical and experimental constraints.

Both the LO and the NLO contribution to the SI direct

detection cross section are proportional to fLO and

2

m

by

Biggest contribution comes from the triangle diagrams

10—42

800
600 =
400 £

200



NLO vs. LO results for the VDM model

104 . 3.5 2.5 - 3.5
; 3.0 .2 30  The K-factor is mostly positive
.o 25 201 o 55 and the bulk of K-factor values
3 JURPPPERTIN, -2 Tt e ,o ranges between 1 and about 2.3.
S| e—s = - B S
2 RSP L5 7 1.5
e 1.0 1.0 ) )
ce 0t 1 sin(2a) My, —m
05 . .. . X 05 fq — _ggx ( ) h12 2h2 mx.
1 ° 2 mw 2 mh mh
1011 . I 0.5 . . %o 1 2
0 50 100 125 150 200 10750 1070 107 107% 0 107
my [GeV] o0 [em?]

Points with m, # mj, and K-factors where |K| > 2.5 are excluded. For m, # my, the interference effects
between the h and ¢ contributions, largely increase the (dominant) vertex contribution. Depending on the
its sigh the NLO cross section is largely increased or suppressed, and the NLO results are therefore no
longer reliable. Two-loop contributions might lead to a better perturbative convergence.

The blind spots at LO and at NLO are the same.

In our scan we did not find any other points where a specific parameter combination would lead to an
accidental suppression at LO that is removed at NLO.

There is a further blind spot when a = 0. In this case the SM-like Higgs boson has exactly SM-like
couplings and the new scalar only couples to the Higgs and to dark matter. The SM-like Higgs decouples

from dark matter and we may end up with two dark matter candidates with the second scalar being
metastable.



NLO vs. LO results for the VDM model

10—45

~T107% m

£ g

c'Bb FE

=<
10—46-
10—46_
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
my, [GeV] my [GeV]

To understand the changes relative to exclusion in parameter space we have chosen two set
of points.

Left: points that are not excluded at LO but are excluded at NLO.

Right: points that are far way from exclusion but are pushed closed to the bound at NLO.



The overall picture

. valid at LO
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However, when performing a scan there is no
noticeable change in the allowed parameter space
of the VDM model.

Next: we are generating a sample that has no
direct detection constraints to finally see how
this changes the different detection regions.
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Conclusions

& Can we distinguish a simple SDM from a simple VDM?
& For some pairs of values (mpm, mz2) only the SDM is allowed.
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€ The reason is the cross section for direct detection - it is several orders of

magnitude smaller in the SDM. One-loop corrections (sometimes) matter.
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Conclusions

& What about the VDM model? If one chooses a point in parameter space
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The End



Nuclear form factors

We here present the numerical values for the nuclear form factors defined in Eq. (4.59). The
values of the form factors for light quarks are taken from micrOmegas [75]

fh =0.01513, fF =0.0.0191, fP =0.0447, (A.99a)
fr, =0.0110, f7 =0.0273, fr = 0.0447, (A.99b)
which can be related to the gluon form factors as
q=u,d,s qg=u,d,s

The needed second momenta in Eq. (4.59) are defined at the scale 4 = myz by using the CTEQ
parton distribution functions [76],

uP(2) =022,  @P(2) = 0.034, (A.101a)
d?(2) =0.11,  dP(2) =0.036, (A.101Db)
sP(2) =0.026,  57(2) =0.026, (A.101c)
®(2) =0.019, & (2) =0.019, (A.101d)
bP(2) = 0.012,  bP(2) =0.012, (A.101e)

where the respective second momenta for the neutron can be obtained by interchanging up- and
down-quark values.



€ Box corrections

T T e~ ey T taes™
S/\S | | | | IS | |
S! 'S S! 'S S| 'S s Vs
F
q q g F g g F q g F q g F q

Fvs:{q}’{hi} F’S:{Q}v{hian} F,S,V:{q},{hi,GX},{X} F’S:{Q}’{hi} F,S,V:{q},{hi,GX},{X}

Just do the calculation - nothing special here! But also need to consider

X X
X Integrating out the top quark field
AN EthG deffh h] Ga G
2200000090 o007 127
dccff
We end up with the effective Lagrangian ERTAS, KAHLHOEFER, JHEPOG6 052 (2019)

ABE, FUJIWARA, HisANO, JHEP 02, 028 (2019)

Lo D (dgff)w Oy

MyGa Nz :

where Cg is the contribution from the triangle (right). Finally the corresponding Wilson coefficient is

ftop (deff) CA 127T



Dark matter nucleon scattering at tree-level

. / At the fundamental level, the DM-
A A R nucleon scattering can be understood
\ / N as the scattering of the DM particle

Af (h Pz 2 A with light quarks, g =u, d, s, and
) iz o T gluons.
; ' A \ 4
/—>—\ i . Light quark Yukawa couplings are
¢ ., ’ , extremely small, the diagrams (a) and

(b) with multiple insertions of light
(a) (b) (c) quark Yukawa couplings, are expected
to be negligibly small.

The DM nuclear recoils can also be induced by the DM-gluon scattering, for which the next-leading-order
contribution emerges at the two-loop level. Diagram (c) has two internal Higgs lines attached to the top
loop and could be relevant. Based on other computations we have to believe that this is just an overall
normalisation factor.

In the one-loop calculation we will still work at the nucleon level, combining the Higgs-quark and Higgs-
gluon couplings to a nucleon into a single Higgs-nucleon-nucleon form factor fymy /vy, as we did for

the tree-level diagrams.



The counterterm contribution

& The counterterm potential is

Vc=—5,u£,|H| —5ﬂS|S| + S | H | + us| S| + o | HI*|S|* + 6u>S% + h.c)

because the model has 6 independent parameters, we need 6 counterterms to cancel the UV
divergences at the one-loop order.

® ® ®
A A A A A A A A A ! A A A A A
hy, hy hi,hy . :
¢ ®) & NS ha, hs
A A . ke < .
‘ ‘ ‘ ‘ l hl he b, b h1 ha
hl ha hl ha h1 ho h1 R h1 ha h1 oo Qg e
h1 ha h1 ha

AAAAAAAA

Su = %(cﬁém% + 520m3 — 254c,0m3,)
v—ssaca dm? — dm? A2 — §2)om? —i Ot1cq — 0tasq) , .o e . .
g P70 (G TR g (e ) The original parameters can be written in terms of
2—752m2 02m2 SaCadmiy — 6m? . . . . P
%_2(@ omi - cadmy + 2sacadmiy = omy) 1 tadpoles, and mass insertions (including mixing). The
HSCQ m—m Ci—&‘i m2 - — Sa Ca) s . .
P o0 2) % (6o = sa)omia] = Zo0hsa o dtaca) sum of all diagrams is zero.
ou? = m(étlsa + Stace) — Z(Smi ,
5= L fsnen(om? — omd) 1 (& — 2)ndy]. This also means we do not need a renormalisation
VHUS . . . .
$rr = %(Ciémgﬂimg_%acagm;g)_%W%_&Qsa), prescription because the sum of all diagrams in the

S5 = 5y (R0 + B + 2sacadmdy) — oo (Btrsa + Otaca) amplitude without counterterms has to be finite.
Vs Vs



The counterterm contribution

® ® ®
A A A A A A A A A A A A A A A A
ha, by hi, ho N L,
p ® ) ®/ A d hl hé
A A . \®

h1 ho hl ha
h1 Dy h1 ha h1 ha h1 ha hl Do h1 ha ,,,,2,
h1 ha Vhi,ho

NN AN AN AN A NN

. 2Vaa10t; 2Va42010 1 Vaaic Vaass
For the external lines  Fee = —2 (5Ap2 —om + 55—+ 5 ) 5 /0=0 Fo = 5 — >
my my p my m7i ms
For the internal lines it " "
. . VidiaCe  VidswSa it = _P2INmN [ Vaaica _ Vaadsa
can be explicitly shown  r,,, . = AL %b . A%b _0 i Mivee o (qz_mlz 2 og ) Irr)

The part with the external lines is proportional to the tree-level expression.

The internal part has a similar expression written in ferms of the one-loop vertices which is also zero.



The SM (non-Higgs) contributions

The SM particles: quarks, leptons, and electroweak gauge bosons, couple to the Higgs bosons h;

only through the rotation of the doublet neutral components h. The coupling modifiers are cosa, for
h; and -sina for h,.

For the top quark, its couplings to hy > are yy1 = yicq

t t . o .
AQh aa, Qauaa a4 (%A and yip = -Y4Sq, respectively.
Thm Th fgf b_hjh Th The SM loops can appear in corrections via the Higgs
I ' b B ' bosons tadpoles, either connected to the dark matter

/\N N/\ /\N N/\N N/\ particle A or to another Higgs line, or via two-point

functions, which are corrections to the Higgs
propagators or finally as corrections fo vertices.

. . 2L Vasaica  VaazSa
For the external lines  F = (—i)—5— (AAI + A4 )fo:O

2 2
p? — my m m2

(1) (1) (1) (1)
For the internal lines 7y, = Yadu® adiee  Uaios® Yasao)oe _ g

my ma

o) 2Vaa (Vaaica | Vaazsa
“Wadre = p*—m} m? + m2 Li,

. 2V442 VAAIC Vaazs
- Vé(lA)Ze = w2\ 2 = <) L,

VAA1 2 VAA2 CCCCC ) . d4l
u L1 =(=1)(— T
6VAA1V111 2VAA Vi125a n 2VaaeViata 2VAA2V1228a) I 1 ( )( Zyt) / (27‘-)4 g |:l - mt:| '

mlmZ mim3 m; 4 .
Vaaisa VAAZ ) d l (3

( 2
vl - VA
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Corrections with scalars only

We are finally left with corrections involving scalars, either of one of the Higgs h: and hz or of the
dark matter field A.

The corrections to external lines from scalar like diagrams are

hi, o, A ha, ha, A
‘ j_\‘ N Iy, ha, A Iy ha, A
A o A A\ b by A A l/—\‘ /'A A l/—\‘ A A A A
AR //V \\\_ _/ > \A ’ A///\:
A A A A Bk T, 7 sy
ihlth ih1,h2 ih17h2 ihuhz ihlth ih1,h2
N N N N N N N N N N N N
2 2iVam Aty 2iVasAt
ST T VPR R T P
2 2 A 2 2
DT —my my ma . .
As with all other previous sets
of diagrams that are
Vi Vi aos proportional to the tree-level
AA1 AA2 L
Fo = S < combination Fo.
2 2
my ms




Corrections that survive

A A A A A A
hl,ilz\,A :/hth . rhl,hz \]71 h2
e T mmal w4 Internal scalars
N N N N N N
hl,iLg\A
A A A A A A A A A A A T A
N e ke oA hahs
! \\A A/ ! N AN 4 N g
xj N N A, A hisha 7 hasho N .
P AL thia M - T e | | | Vertex corrections
L, he L, ha L, ha L, ha L, ha
hl ha : : : : :
N N N N N N N
2 2 2
s2a (M7 — m3)m4 2 2 2 92
.F: 9 3 9 [./4102(0 mA7mA7m17m27mA)
128 2vgvimim3 5 9 9 o
+A2D3(0,0,m%, m%, 0, m%, mi, mi, m3, m>)
2 2 2 2 2 2 2
—|—A3D3(O, Oa M, M 4y, Oa Mg, Ty, Mg, My, mA)]
Ar = 4(m3s2 + mic2)(2mivgs? + 2mivgcd — mivgsan + Mavssaa) f2 m2 ILL2 One-loop Squar'ed -
Ay = —2misa 5 o — (m? otd 1
t isellm ¢ Tznsi (Ti ) (v v /&121 N —NTAR F2 because tree-level
Az = 2miea[(5m] 4+ m3)vssa — (mf — m3) (vgsza + dvpc))] . TV ma .
IS Zero




_ Scalar DM: vs=1TeV, mp=300 GeV, sina=01  Resylts for the point presented as a function of
' the DM mass show that the approximation was
= good (especially in reproducing the shape.
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3 s, myfy ms

5 4,2 2,6
64m° mivy mivg
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For this set of the parameters the curve has a

, maximuml 0'(1)~ 3 x 10_53 sz fOI" My~ 630 G@V
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Here we can see two dips appearing in the
exact calculation:

1.x107%r

110754+ f one for m, = m, corresponding to the

; vanishing of the factor (m:® - mz2) and
1.x107%%+

oan[cm?]

[ one at around m, ~ 30 GeV which is caused
1.x10764|

by accidental cancellation between loop
] integrals. The location of this dip varies
] with the set of parameters chosen and is a
1000 combination of all input parameters, the
mass of the scalars, the angle a and vs .
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