
One-loop contributions to dark matter-nucleon 
scattering in a scalar and a vector DM model

Rui Santos 
ISEL & CFTC-UL

12 September 2019

Scalars2019 
University of Warsaw

with Azevedo, Duch, Grzadkowski, Huang, Iglicki

and with Glaus, Mühlleitner, Müller, Patel



Motivation

Azevedo, Duch, Grzadkowski, Huang, Iglicki, Santos, ”Testing scalar versus vector dark matter”, 
PRD99, 015017 (2019)

Azevedo, Duch, Grzadkowski, Huang, Iglicki, Santos, ”One-loop contribution to dark matter-nucleon 
scattering in the pseudoscalar dark matter model”, JHEP 1901 (2019) 138 

• The models have the same number of particles and the same number of 
independent parameters.

• Goal - compare two of the simplest models with dark matter candidates 
- one with scalar dark matter and one with vector dark matter.

• Both models have a new complex scalar singlet. Its real component 
mixes with the neutral component from the doublet.

• In this case can we distinguish the models experimentally? And if so 
how? 

Glaus, Mühlleitner, Müller, Patel, ”Electroweak Corrections to Dark Matter Direct Detection in a Vector 
Dark Matter Model”, arxiv 1908.09249



The models

H =
G±

1

2
(vH + h + iG0)

ℒ = ℒSM −
1
4

XμνXμν + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H

Dark U(1)X gauge symmetry: all SM particles are U(1)X  neutral. 
New complex scalar field - scalar under the SM gauge group but has unit charge under U(1)X.  
Lagrangian invariant under

Xμ → − Xμ, 𝕊 → 𝕊*

which is just the charge conjugate symmetry in the dark sector. It forbids the kinetic mixing 
between the SM gauge boson from U(1)Y and the dark one from U(1)X. The Lagrangian is 

with

1. Vector Dark Matter (VDM)

𝕊 =
1

2
(vS + S + iA)

h is the real doublet component, S is the new real scalar component and A is the Goldstone boson 
related with U(1)X .

Hambye, JHEP 0901 (2009) 028. Lebedev, Lee, Mambrini, PLB707 (2012) 570. Farzan, Akbarieh; JCAP 1210 (2012) 
026. Baek, Ko, Park, Senaha; JHEP 1305 (2013) 036, … 

Dμ = ∂μ + igX Xμ

mDM = gXvS

(h1

h2) = ( cos α sin α
−sin α cos α) (h

S)



The models

The SM is extended by an extra complex scalar singlet     which has a global U(1) symmetry 

𝕊 → eiα𝕊

with

2. Scalar Dark Matter (SDM)

ℒ = ℒSM + (Dμ𝕊)†(Dμ𝕊) + μ2
S 𝕊

2
− λS 𝕊

4
− κ 𝕊

2
H†H+(μ2𝕊2 + h . c.)

𝕊

Then we softly break this dark U(1) symmetry to the residual Z2 symmetry 𝕊 → − 𝕊

𝕊 =
1

2
(vS + S + iA)

h is the real doublet component, S is the new real scalar component and A is the dark matter 
candidate. The extra soft breaking term gives mass to A (the dark matter candidate).

Silveira, Zee; PLB161, 136 (1985). McDonald; PRD50 (1994) 36373649, … 

H =
G±

1

2
(vH + h + iG0)

S¼ 1ffiffiffi
2

p ðvSþ ivA þ ϕSþ iAÞ;

H0 ¼ 1ffiffiffi
2

p ðvþ ϕH þ iσHÞ where H ¼
"
Hþ

H0

#
; ð2:3Þ

where we have temporarily allowed hSi to be complex.
Locations of extrema of the potential (2.1), correspond-

ing values of the potential and corresponding curvatures in
the basis ðϕH;ϕS; AÞ are as follows
v1:

v2 ¼ 4λSμ2H − 2κðμ2S− 2μ2Þ
4λHλS− κ2

;

v2S¼
4λHðμ2S− 2μ2Þ − 2κμ2H

4λHλS− κ2
; v2A ¼ 0 ð2:4Þ

V1 ¼
−1

4λHλS− κ2
fλHðμ2S− 2μ2Þ2

þ μ2H½λSμ2H − κðμ2S− 2μ2Þ&g ð2:5Þ

M2 ¼

0

B@
2λHv2 κvvS 0

κvvS 2λSv2S 0

0 0 −4μ2

1

CA; ð2:6 Þ

v2:

v2 ¼ 4λSμ2H − 2κðμ2Sþ 2μ2Þ
4λHλS− κ2

; v2S¼ 0;

v2A ¼ 4λHðμ2Sþ 2μ2Þ − 2κμ2H
4λHλS− κ2

; ð2:7Þ

V2 ¼
−1

4λHλS− κ2
fλHðμ2Sþ 2μ2Þ2

þ μ2H½λSμ2H − κðμ2Sþ 2μ2Þ&g ð2:8 Þ

M2 ¼

0

B@
2λHv2 0 κvvS
0 4μ2 0

κvvS 0 2λSv2S

1

CA; ð2:9Þ

v3:

v2 ¼ μ2H
λH

; v2S¼ 0; v2A ¼ 0; ð2:10Þ

V3 ¼ −
μ4H
4λH

ð2:11Þ

M2 ¼

0

BB@

2μ2H 0 0

0 2μ2 þ κμ2H
2λH

− μ2S 0

0 0 −2μ2 þ κμ2H
2λH

− μ2S

1

CCA;

ð2:12Þ

v4:

v2 ¼ 0; v2S¼
μ2S− 2μ2

λS
; v2A ¼ 0; ð2:13Þ

V4 ¼ −
ðμ2S− 2μ2Þ2

4λS
ð2:14Þ

v5:

v2 ¼ 0; v2S¼ 0; v2A ¼ μ2Sþ 2μ2

λS
; ð2:15Þ

V5 ¼ −
ðμ2Sþ 2μ2Þ2

4λS
ð2:16 Þ

Note that vS≠ 0 and vA ≠ 0 may happen only if μ2 ¼ 0.
Since nonzero μ2 is essential to avoid the appearance of a
Goldstone boson, we do not consider those points any
more.
Forcing the vacuum v1 to be the global minimum implies

that we have to assume λH > 0, 4λHλS− κ2 > 0 and
μ2 < 0. Then for consistency we enforce the conditions

2λSμ2H > κðμ2S− 2μ2Þ and 2λHðμ2S− 2μ2Þ > κμ2H

ð2:17Þ

It turns out that V1 < V4 for any choice of parameters,
while V4 < V5 for μ2 < 0. From (2.17) one can find that
the vacuum v3 is never a minimum. Obviously, v2 is not a
minimum either for μ2 < 0. Therefore we conclude that for
μ2 < 0 the vacuum v1 is the global minimum. Note that in
this case A is indeed a pseudo-Goldstone boson and its
mass vanishes in the limit of exact global Uð1Þ as it was
discussed and anticipated below (2.1). The presence of the
Uð1Þ breaking term μ2ðS2 þS'2Þ implies a trivial shift of
the μ2S→ μ2S− 2μ2 and an addition of the Goldstone boson
mass −4μ2. In fact, an equivalent Uð1Þ breaking would be
to add just the Goldstone boson mass without the trivial
shift by replacing μ2ðS2 þS'2Þ by μ2ðS−S'Þ2.
Similar models have been considered in a more general

context including a possibility of fast first order phase
transition in [7,20,30]. In the VDM that we consider here,
A becomes a longitudinal component of the massive DM
vector X, but it remains an independent degree of freedom.
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(h1

h2) = ( cos α sin α
−sin α cos α) (h

S)



mDM; sin α; m2; vS

VDM: SM + vector dark matter + new scalar 

SDM: SM + scalar dark matter + new scalar
PARTICLE CONTENT

The models

INDEPENDENT 
PARAMETERS Singlet VEV

Mass of the 
second scalar

Mixing angle between 
doublet and singlet (real)

Mass of the DM 
particle

There is obviously a 125 GeV Higgs (other 
scalar can be lighter or heavier). 

Experimental and theoretical constraints to 
be discussed next

extremely hard to disentangle the two scenarios for
the adopted parameters at this collider. On the other
hand, for

ffiffiffi
s

p
¼ 240 GeV expected for the CEPC and the

same parameters, for the minimal bin size ∼3% ×
EZjEZ¼E1ð240 GeVÞ ¼ 3.1 GeV the separation between the
two cross sections is at the level of 12σ. Therefore it is fair
to conclude that there exist regions of parameters, where the
two scenarios might be disentangled at future eþe− colliders
in resonance regions. However, without a detailed error and
background analysis that takes into account all experimental
details it is impossible to draw any solid final conclusions.

V. NUMERICAL SIMULATION

The two models described in the previous sections were
implemented in the SCANNERS [28,63] code as model
classes. The code takes as input any scalar potential that
is a polynomial in the fields of order up to four and by
considering the VEVs, mixing angle and physical masses as
independent parameters, turns the problem of deriving the
original potential parameters into a set of linear equations,
with a very significant increase in speed of the scanning
process (see [28] for details). In the most general cases, the
drawback of this method is that a given point is only verified
to be a global minimum at the end of the procedure.
However, because it is easy to obtain closed conditions
for the global minimum for the particular models under
study, this problem is avoided. The code is equipped with
a set of tools which allow to automatize the parameter
scans and also with generic modules that allow to test local
vacuum stability and library interfaces to the constraints
implemented for each model. SCANNERS is also interfaced
with other high energy tools that simplify the implementa-
tion of the constraints that will be described shortly.

The ranges for the independent parameters are listed
in Table III. The ranges are the same for both models
under study.
The points generated using SCANNERS have to be in

agreement with the most relevant experimental and theo-
retical constraints. The discovered Higgs boson mass is
taken to be mh ¼ 125.09GeV from the ATLAS/CMS
combination [64]. In these models the Higgs couplings
to remaining SM particles are all modified by the same
factor. Therefore, the bound on the signal strength [64] is
used to constrain this parameter. The vacuum expectation
value of the Higgs doublet is fixed by the W-mass. The
points generated have to comply with the following
theoretical constraints: (i) the potential has to be bounded
from below; (ii) the vacuum is chosen so that the minimum
is the global one and (iii) perturbative unitarity holds. The
first two constraints are implemented in the code while
perturbative unitarity is imposed trough an internal numeri-
cal procedure that includes all possible two to two
processes and that is available in SCANNERS for a generic
model. In these models new contributions to the radiative
corrections of the massive gauge-boson self-energies,
ΠWWðq2Þ and ΠZZðq2Þ appear via the mixing between
the neutral components of the doublet and the singlet.
We use the variables S, T, U [65] (expressions available
in [66]) to guaranty that the models are in agreement with
the electroweak precision measurements at the 2σ level.
The phenomenological constraints are imposed either via

libraries in the code or with interfaces with other high
energy codes. The collider bounds from LEP, Tevatron,
and the LHC are all encoded in HIGGSBOUNDS [67]. The
program can be used to ensure agreement at 95% confi-
dence level exclusion limits for all available searches for
non-standard Higgs bosons. The Higgs decay widths,
including the state-of-the art higher order QCD corrections
were calculated with SHDECAY [63].2 sHDECAY is based
on the implementation of the models in HDECAY [68,69].
In our calculations all electroweak radiative corrections
are turned off for consistency. A detailed description of the
program can be found in Appendix A of [63].

FIG. 6. Exemplary diagrams of the standard model background processes. Neutrinos contribute to missing energy and can therefore
mimic dark particles. The background cross section could be reduced by polarizing the initial eþ and e− beams.

TABLE III. Independent parameters’ range for both models.

Parameter Range

SM-Higgs—m1 125.09 GeV
Second Higgs—m2 [1,1000] GeV
DM—mDM [1,1000] GeV
Singlet VEV—vs [1,107] GeV
Mixing angle—α [− π

4,
π
4]

2The program SHDECAY can be downloaded from the url:
http://www.itp.kit.edu/maggie/sHDECAY.
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Constraints
Theoretical and collider:

Points generated with ScannerS requiring 

- absolute minimum 
- boundedness from below 
- that perturbative unitarity holds 
- S,T and U

Signal strength: gives a constraint on the mixing angle 𝛂

Searches:  for extra scalars imposed via HiggsBounds which gives a 
 bound that is a function of the new scalar mass and cos𝛂

Searches:  BR of Higgs to invisible below 24%



Constraints

DM abundance: we require 

(Ωh2)DM < 0.1186

or to be in the 5𝜎 allowed interval from the Planck collaboration measurement

(Ωh2)obs
DM = 0.1186 ± 0.0020

Direct detection: we apply the latest XENON1T bounds

σeff
DM,N = fDM σDM,N with fDM =

(Ωh2)DM

(Ωh2)obs
DM

Indirect detection:  for the DM range of interest, the Fermi-LAT upper bound 
on the dark matter annihilation from dwarfs is the most stringent. We use the 
Fermi-LAT bound on bb. 

[Calculated with MicroOmegas]

[Fraction contributing to the scattering]



No diference between models for most of the 
measurable quantities - points from both models 

fill the entire parameter space.

Hard bound coming from 
the measurement of the 
125 GeV Higgs couplings

Shape comes from searches for extra scalars. 
Maximum close to tt threshold (Higgs production cross 

section via gluon fusion) has a local maximum.  
The total width of the second Higgs has an extra 
contribution h2 → DMDM (BR(h2 → ZZ) might be 

suppressed) and larger allowed values of sinα located 
outside of the pattern.

In the right panel of Fig. 9 we show sin α as a function of
the second Higgs mass. The allowed band between about
−0.34 and 0.34 for m2 above roughly m1=2 is a hard
(m2-independent) bound on sinα that comes from the
combined signal strength measurements of the production
and decay of the SM-like Higgs, h1. This bound is weaker
than in case of the real singlet model with no DM
candidate. The reason is that both BRðh1 → VVÞ and
BRðh1 → ff̄Þ might be reduced if mDM < m1=2. The
“pattern” of densely populated points is visible in the right
panel of Fig. 9. Those points are originating from con-
straints imposed by searches for heavy scalar resonances,
i.e., h2 in our case. The pattern originates mainly from the
search for ppðggÞ → h2 → ZZ. Let us focus on this final
state. The h2 production cross section is the same as for the
SM multiplied by sin2 α. Therefore, the shape of the pattern
reflects mostly the behavior of the SM cross section σðhSMÞ
as a function of mSM that is here replaced by m2. That is
the reason why the exclusion is maximal close to the tt̄
threshold, where the Higgs production cross section via
gluon fusion has a local maximum. Notice also the presence
of less densely populated regions outside of the pattern with
relatively large values of sinα. In order to understand its
appearance, one should note that the total width of the
second Higgs has an extra contribution Γðh2 → DMDMÞ.
Therefore, in contrast to what happens in the singlet
extension with no dark matter candidate, here the BRðh2 →
ZZÞmight be suppressed implying larger allowed values of
sin α located outside of the pattern. To illustrate this point
we plot in Fig. 10 BRðh2 → DMDMÞ þ BRðh2 → h1h1Þ as
a function of m2 but only for points outside of the pattern.
As expected, all those points correspond to large value
of BRðh2 → DMDMÞ þ BRðh2 → h1h1Þ. The reason to
have much fewer points outside of the pattern is that the
decay h2 → DMDM has to be allowed while the range of

variation ofm2 and of themDM is the same. That eliminates
3=4 of points in the considered region.
Finally, one can clearly see the result of the searches for

h2 → h1h1 close to the cross section threshold and also
the much harder bound for m2 < m1=2. Regarding the
comparison of the two models we again see no difference
and the same can be said for the projection in the
ðsin α; m2Þ plane.
In Fig. 11 we show m2 as a function of the DM mass.

This is a projection of the parameter space where a clear
difference between the two models can be seen. There are
two bands where the models coexist, close to mDM ≃m1=2
and to m2 ∼ 2 ·mDM. The explanation for the band struc-
ture could be easily guessed; these are the two resonances
h1 and h2, respectively. In those regions, the kinematical
enhancement by a resonance must be compensated by
suppressed couplings that govern DM annihilation in the
early Universe. This mechanism is nearly the same in both
models. However, as seen from the figure there are two
distinct regions above and belowm2 ¼ 2 ·mDM where only
the scalar model survives. Hence, there are pairs of values
ðm2; mXÞ that if hinted at the LHC will allow to exclude the
vector model in favor of the scalar one. The reverse is not
true as can be seen from the figure. The absence of VDM
points in those regions is clarified in Fig. 12, where a large
suppression of the cross section for scalar DM-nucleon
scattering relative to the vector model one can be seen. In
fact, a large portion of the parameter space of the VDM is
excluded because they are above the Xenon1T bound.
Therefore for a given mDM there exist m2 large enough to
be excluded by the Xenon1T bound. On the other hand, for
the SDM, even including one-loop corrections,3 all points
are below the Xenon1T line. In order to have a clear picture

FIG. 10. BRðh2 → h1h1Þ þ BRðh2 → DMDMÞ vs m2 for
points that survive the bounds coming from heavy resonances
and in particular σðppðggÞ → h2 → ZZÞ with still large values
sin α. Only points located outside of the pattern in the right panel
of Fig. 9 are shown.

FIG. 11. Second Higgs mass (m2) as a function of the DMmass
(mDM).

3Hereafter, in this context, we are referring to the estimate
of the upper bound for one-loop radiative corrections as given
in (2.22).
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But there is a difference

Region where only SDM 
survives. In this region, 
if we could measure the 
DM mass and m2, VDM 

would be excluded. 

Region where m2 is 
close to 2mDM.

Region where m1 is close 
to 2mDM.

The models coexist: kinematical enhancement by the resonance must be compensated 
by suppressed couplings that govern DM annihilation in the early Universe.

m2 ≈ 2mDM DM annihilation through the non-SM-like resonance h2

m1 ≈ 2mDM DM annihilation through the non-SM-like resonance h1



−iℳtree = −
i2fNmN

vH ( VAA1cα

q2 − m2
1

−
VAA2sα

q2 − m2
2 ) ūN(p4)uN(p2)

−iℳtree ≈ − i
sαcα fNmN

vHvS ( m2
1 − m 2

2

m2
1 m2

2 ) q2ūN(p4)uN(p2)

A A

N N

h1,2

Where does this difference comes from? - Dark matter 
nucleon scattering at tree-level

The total cross section for DM-nucleon scattering is 

σtree
DM,N ≈

sin2 2α f 2
N

3π
m2

N μ6
DM,N

m2
DMv2

Hv2
S

(m2
1 − m2

2)2

m4
1m4

2
v4

DM where μDM,N =
mDMmN

mDM + mN

Because vDM ∼ 200 Km/s ⇒ v4
DM ∼ 10−13

σtree
DM,N ∼ 10−70 cm2 ≪ σXENON1T

DM,N ∼ 10−46 cm2

Gross, Lebedev, Toma, PRL119 (2017) no.19, 191801

It is a blind “spot” but 
for the entire 

parameter region!



An estimate of the cross section at one-loop was proposed 

σtree
DM,N ≈

sin2 α
64π5

m4
N f 2

N

m4
1v2

H

m4
2 m2

DM

v6
S {(m2 /mDM)4 mDM ≥ m2

1 mDM < m2

So, the difference comes from Direct Detection - it is very restrictive in 
VDM and not restrictive at all in SDM. In fact, at tree-level 

σtree
DM,N ∼ 10−70 cm2 ≪ σXENON1T

DM,N ∼ 10−46 cm2

Line from the XENON1T 
experiment.

And what happens at one-loop?

Gross, Lebedev, Toma, PRL119 (2017) no.19, 191801



It is not shown, but the 
XENON1T line cuts a lot of 

the VDM points.

SDM (tree-level)

SDM (one-loop approx)

Line from the XENON1T 
experiment.



−iℳtree ≈ − i
sαcα fNmN

vHvS ( m2
1 − m2

2

m2
1m2

2 ) q2ūN(p4)uN(p2)

A A

N N

h1,2

The one-loop calculation for SDM model

The tree-level amplitude is proportional to q2, this means more than 10 
orders of magnitude below the XENON1T bound. 

One-loop estimate brings the cross section close to the bound. 

In the one-loop calculation we will still work at the nucleon level, 
combining the Higgs-quark and Higgs-gluon couplings to a nucleon into a 
single Higgs-nucleon-nucleon form factor fN mN /vH , as we did for the 
tree-level diagrams. 

We will work in the limit of zero momentum transfer q2 → 0 in order to 
simplify our calculation, which is justified by the fact that the terms 
proportional to q2 are suppressed.
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N N

A A

h1, h2

h1, h2, A h1, h2, A

N N

A A

h1, h2

A

h1, h2

N N

A A

h1, h2

A

h1, h2
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Corrections that survive

Internal scalars

Vertex corrections
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P
_
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0
1
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Thus, the total one-loop contributions to the factor F is given by

F =
(V (1)

AA1 i + V (1)
AA1 v)cα

m2
1

−
(V (1)

AA2 i + V (1)
AA2 v)sα

m2
2

=
is2α(m2

1 −m2
2)

8vHv3Sm
2
1m

2
2

∫
d4l

(2π)4

[
A1(l · p)

(l2 −m2
1)(l

2 −m2
2)[(l + p)2 −m2

A]
(4.21)

+
A2(l · p)

(l2 −m2
1)

2(l2 −m2
2)[(l + p)2 −m2

A]
+

A3(l · p)
(l2 −m2

1)(l
2 −m2

2)
2[(l + p)2 −m2

A]

]

where the coefficients Ai are defined as follows

A1 ≡ 4(m2
1s

2
α +m2

2c
2
α)(2m

2
1vHs2α + 2m2

2vHc2α −m2
1vSs2α +m2

2vSs2α) ,

A2 ≡ −2m4
1sα[(m

2
1 + 5m2

2)vScα − (m2
1 −m2

2)(vSc3α + 4vHs3α)] , (4.22)

A3 ≡ 2m4
2cα[(5m

2
1 +m2

2)vSsα − (m2
1 −m2

2)(vSs3α + 4vHc3α)] .

Note that in the derivation of eq. (4.21) we have used the tree-level relations from eq. (2.7)

and the DM particle on-shell condition p2 = m2
A.

We can utilize the Passarino-Veltman C and D functions as defined in refs. [24–26] to

further reduce the expression of F to be

F = − s2α(m2
1 −m2

2)

128π2vHv3Sm
2
1m

2
2

pµ[A1Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A)

+A2Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
1,m

2
2,m

2
A)

+A3Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
2,m

2
2,m

2
A)]

= −s2α(m2
1 −m2

2)m
2
A

128π2vHv3Sm
2
1m

2
2

[A1C2(0,m
2
A,m

2
A,m

2
1,m

2
2,m

2
A)

+A2D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
1,m

2
2,m

2
A)

+A3D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
2,m

2
2,m

2
A)] , (4.23)

where we have used p2 = m2
A and the following identity

Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A) = pµC2(0, p

2, p2,m2
1,m

2
2,m

2
A) , (4.24)

as well as the similar identities for D functions. As anticipated earlier, this expression shows

that the one-loop DM-nucleon scattering amplitude is finite in the zero momentum-transfer

limit. Moreover, since F is proportional to m2
A and the C2 and D3 functions behave as

constants in the limit mA → 0 (see appendix B for details), the amplitude vanishes (as

expected) in the limit mA → 0. It is highly non-trivial to satisfy both conditions at the

same time, therefore this is an important test of our results.

5 Numerical studies

Having the explicit expression of the one-loop DM-nucleon recoiling cross section σ(1)
AN in

eq. (4.1) with its loop function F in eq. (4.23), we can calculate the magnitude of the DM-

nucleon cross section with typical model parameters. In this section, we take vS = 1 TeV,
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Thus, the total one-loop contributions to the factor F is given by

F =
(V (1)

AA1 i + V (1)
AA1 v)cα

m2
1

−
(V (1)

AA2 i + V (1)
AA2 v)sα

m2
2

=
is2α(m2

1 −m2
2)

8vHv3Sm
2
1m

2
2

∫
d4l

(2π)4

[
A1(l · p)

(l2 −m2
1)(l

2 −m2
2)[(l + p)2 −m2

A]
(4.21)

+
A2(l · p)

(l2 −m2
1)

2(l2 −m2
2)[(l + p)2 −m2

A]
+

A3(l · p)
(l2 −m2

1)(l
2 −m2

2)
2[(l + p)2 −m2

A]

]

where the coefficients Ai are defined as follows

A1 ≡ 4(m2
1s

2
α +m2

2c
2
α)(2m

2
1vHs2α + 2m2

2vHc2α −m2
1vSs2α +m2

2vSs2α) ,

A2 ≡ −2m4
1sα[(m

2
1 + 5m2

2)vScα − (m2
1 −m2

2)(vSc3α + 4vHs3α)] , (4.22)

A3 ≡ 2m4
2cα[(5m

2
1 +m2

2)vSsα − (m2
1 −m2

2)(vSs3α + 4vHc3α)] .

Note that in the derivation of eq. (4.21) we have used the tree-level relations from eq. (2.7)

and the DM particle on-shell condition p2 = m2
A.

We can utilize the Passarino-Veltman C and D functions as defined in refs. [24–26] to

further reduce the expression of F to be

F = − s2α(m2
1 −m2

2)

128π2vHv3Sm
2
1m

2
2

pµ[A1Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A)

+A2Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
1,m

2
2,m

2
A)

+A3Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
2,m

2
2,m

2
A)]

= −s2α(m2
1 −m2

2)m
2
A

128π2vHv3Sm
2
1m

2
2

[A1C2(0,m
2
A,m

2
A,m

2
1,m

2
2,m

2
A)

+A2D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
1,m

2
2,m

2
A)

+A3D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
2,m

2
2,m

2
A)] , (4.23)

where we have used p2 = m2
A and the following identity

Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A) = pµC2(0, p

2, p2,m2
1,m

2
2,m

2
A) , (4.24)

as well as the similar identities for D functions. As anticipated earlier, this expression shows

that the one-loop DM-nucleon scattering amplitude is finite in the zero momentum-transfer

limit. Moreover, since F is proportional to m2
A and the C2 and D3 functions behave as

constants in the limit mA → 0 (see appendix B for details), the amplitude vanishes (as

expected) in the limit mA → 0. It is highly non-trivial to satisfy both conditions at the

same time, therefore this is an important test of our results.

5 Numerical studies

Having the explicit expression of the one-loop DM-nucleon recoiling cross section σ(1)
AN in

eq. (4.1) with its loop function F in eq. (4.23), we can calculate the magnitude of the DM-
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as well as the similar identities for D functions. As anticipated earlier, this expression shows

that the one-loop DM-nucleon scattering amplitude is finite in the zero momentum-transfer

limit. Moreover, since F is proportional to m2
A and the C2 and D3 functions behave as

constants in the limit mA → 0 (see appendix B for details), the amplitude vanishes (as

expected) in the limit mA → 0. It is highly non-trivial to satisfy both conditions at the

same time, therefore this is an important test of our results.
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AN in
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4 Explicit calculation of the one-loop DM-nucleon amplitude at zero-
momentum transfer

In this section, we are going to calculate the one-loop contributions to the DM-nucleon

scattering cross section. We would like to first argue that some diagrams that would in

principle contribute to the scattering amplitude, can be omitted because they are sub-

dominant. At the fundamental level, the DM-nucleon scattering can be understood as the

scattering of the DM particle A with light quarks, q = u, d, s, and gluons. Since the light

quark Yukawa couplings are extremely small, the diagrams with multiple insertions of light

quark Yukawa couplings, exemplified in diagrams (a) and (b) in figure 2, are expected to

be negligibly small. Hence, it is sufficient for the required precision to keep only diagrams

with only one light quark Yukawa coupling insertion. Also, it is easy to show that the

one-loop corrections to the external quark lines and the vertices hiq̄q are always propor-

tional to the their tree-level counterparts, which means that they are canceled identically

in the limit of zero momentum transfer. Therefore, the remaining diagrams for DM-quark

scattering can be viewed as the one-loop vertex corrections to AAh1 and AAh2. On the

other hand, the DM nuclear recoils can also be induced by the DM-gluon scattering, for

which the next-leading-order contribution emerges at the two-loop level. In contrast to the

quark case, the diagrams like the one in figure 2(c) with two internal Higgs lines attached

to the top loop, should be of the same order as the two-loop ones with only one Higgs

coupling to the top loop, since the top quark Yukawa coupling is of O(1). Nevertheless,

in the present paper, we restrict ourselves to the calculation of diagrams with only one

Higgs coupling to the top quark loop, assuming that other diagrams with double Higgs

coupling should be much smaller. Actually, based on the computations in ref. [22], we have

good reasons to expect that this is indeed the case. Concluding, we are going to focus on

the diagrams with only a single Higgs Yukawa coupling either to an external light quark

line (for DM-light quark scattering) or to a loop top quark line (for DM-gluon scattering).

Therefore we can reduce our calculation to the one-loop corrections V (1)
AA1, AA2 to the ver-

tices AAh1 and AAh2, respectively, combining the Higgs-quark and Higgs-gluon couplings

to a nucleon into a single Higgs-nucleon-nucleon form factor fNmN/vH , as we did for the

tree-level diagrams in section 3.

Furthermore, we will work in the limit of zero momentum transfer q2 → 0 in order to

simplify our calculation, which is justified by the fact that the terms proportional to q2 are

suppressed further by powers of the relative DM velocities as previously was illustrated in

the case of the tree-level computations. As a result, the one-loop contributions to the DM

nuclear recoil reactions in the present model can be represented as

σ(1)
AN =

f2
N

πv2H

m2
Nµ2

AN

m2
A

F2 , (4.1)

where the one-loop function F is defined as

F =
V (1)
AA1cα
m2

1

−
V (1)
AA2sα
m2

2

(4.2)
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One-loop squared - 
because tree-level 

is zero

see also, Ishiwata, Toma, JHEP 1812 089 (2018)
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Figure 8. The DM-nucleon scattering cross section σAN as the function of the DM mass mA. The
blue solid curve represents the exact leading-order one-loop contribution in the limit of vanishing
DM velocity, while the yellow dashed curve displays the approximate results proposed in ref. [10].

m2 = 300GeV, sα = 0.1, while leaving the DM mass varying freely. Note that we have

reduced the final analytic expression for F in terms of the Passarino-Veltman functions, so

that it is easy to calculate it numerically adopting the package LoopTools [26]. The final

result is displayed in figure 8 as the smooth solid blue curve. We note that, for the given

set of parameters, the DM-nucleon scattering cross section varies between 10−58 cm2 and

10−52 cm2 when the DM mass mA is in the range of 1–105GeV. For the same set of the

parameters the curve has a maximum value of σ(1)
ANmax ∼ 3×10−53 cm2 for mA ∼ 630GeV.

This should be compared with the tree-level contribution at the leading order of the DM

velocity given in eq. (3.2), which predicts σtree
AN ∼ 10−69–10−65 cm2 with the same set of

parameters. Thus, we can conclude that the leading-order DM-nucleon cross section is

provided by the one-loop contributions at vanishing DM velocity, rather than the finite

velocity corrections.

In contrast, we also show as the dashed yellow curve in figure 8 the following approxi-

mation proposed in ref. [10] as an estimate of the one-loop cross-section

σ(1)
AN ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s2α
64π5

m4
Nf2

N

m4
1v

2
H

m8
2

m2
Av

6
S

, mA ≥ m2

s2α
64π5

m4
Nf2

N

m4
1v

2
H

m4
2m

2
A

v6S
, mA ≤ m2

. (5.1)

It is clear that when mA lies below 1TeV, the approximation is about one-order larger than

the exact result, while, if mA ≫ 1TeV, the exact σ(1)
AN is almost one-order higher. Never-

theless, these two curves share almost the same scaling behaviour in the limits of very small

– 14 –

For this set of the parameters the curve has a 
maximum, σ(1) ∼ 3 × 10−53 cm2 for mA ∼ 630 GeV. 

The corresponding σtree ∼ 10−69–10−65 cm2

New blind spots found for:  

a) one for m2 = m1 corresponding to the vanishing of the factor (m12 − m22) and  

b) random - caused by accidental cancellation between loop integrals. The location of this dip varies 
with the set of parameters chosen and is a combination of all input parameters, the mass of the 
scalars, the angle α and vS . 



And no major changes after the exact 
one-loop calculation

Since the exact one-loop results lead to cross sections that are below the Xenon1T limit, the 
plot is exactly the same.

The tree-level AN recoiling amplitude 
vanishes in the limit of zero momentum 
transfer, the one-loop amplitude and F 
should be finite in the same limit.  

In other words, we do not need to 
renormalise the model (the set of 
diagrams with counterterms only is 
zero). Consequently, the sum of all 
diagrams has to be finite. . 
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�

q

�

q
S

Figure 2: Tree level diagram contribution to the SI crosssection. The mediator S corresponds to the two Higgs
bosons h1 and h2. The quarkline q corresponds to all quarks q = u, d, s, c, b, t.

detetion experiments is below the charm, bottom and top quark mass. This can be achieved by
replacing the heavy quarks by the corresponding e↵ective gluon operators [12, 13]

mQQ̄Q ! �
↵S

12⇡
G

a
µ⌫G

aµ⌫
. (5.51)

For the tree-level contribution the t-channel diagrams have to be calculated for vanishing mo-
mentum transfer. The respective Wilson coe�cient for the e↵ective operator in Eq. (5.45) is
extracted by projecting to the corresponding tensor structure. The additional symmetry factor
of the amplitude has to be accounted for yielding the following fq factor

fq =
1

2

gg�

mW

sin(2↵)

2

m
2
h1

� m
2
h2

m
2
h1
m

2
h2

m� , q = u, d, s, c, t, b , (5.52)

yielding the leading-order SI crosssection

�
LO =

sin2 2↵

4⇡

✓
m�mN

m� +mN

◆2
�
m

2
h1

� m
2
h2

�2

m
4
h1
m

4
h2

m
2
�m

2
N

v2v2S

��
X

q=u,d,s

fTq +
2

9
fTG

��2 . (5.53)

The leading-order crosssection is in agreement with [30]2.

2In [30], they introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM, which corresponds
to |

P
q=u,d,s fTq + 2

9fTG

��.

11

We will now use an effective Lagrangian starting with 
the interaction of dark matter with quarks and gluons. 

5 Dark matter direct detection at tree-level

In the following we want to set our notation and conventions used in the calculation of the spin-
independent (SI)-crosssection. The interaction between the DM and the nucleus is described in
terms of e↵ective coupling constants. The major contributions to the crosssection is given by
light quarks q = u, d, s and gluons. For vector DM the e↵ective operator basis contributing to
the SI crosssection are given by [27]

L
eff =

X

q=u,d,s

L
eff
q + L

eff
G (5.45)

with

L
eff
q = fqXµX

µ
mq q̄q +

gq

m2
�
X

⇢
i@

µ
i@

⌫
X⇢O

q
µ⌫ , (5.46a)

L
eff
G = fGX⇢X

⇢
G

a
µ⌫G

a,µ⌫
. (5.46b)

The quark twist-2 operator O
q
µ⌫ corresponding to the traceless parts of the energy-momentum

tensor of the nucleus, is given by [28,29]

O
q
µ⌫ =

1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (5.47)

Operators suppressed by the DM velocities and the momentum transfer q are neglected in the
analysis. Furthermore, we neglect contributions introduced by the gluon twist-2 operator O

g
µ⌫ ,

since those contributions are suppressed by an additional factor ↵S [27].
For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements

are given by

hN |mq q̄q |Ni /mN = fTq , (5.48a)

1 �

X

q=u,d,s

fTq = fTG , (5.48b)

hN(p)| Oq
µ⌫ |N(p)i =

1

mN

✓
pµp⌫ �

1

4
m

2
Ngµ⌫

◆
(q(2) + q̄(2)) (5.48c)

with the nucleon mass mN and q(2), q̄(2) as the second moments of the parton distribution
functions of the quark q(x) and the antiquark q̄(x), respectively. The numerical values for the
matrix elements are given in the appendix. Applying Eq. (5.48) on the e↵ective Lagrangian in !!!!!!!!
Eq. (5.45) yields the SI e↵ective coupling of vector dark matter with nucleons,

fN/mN =
X

q=u,d,s

fqfTq +
X

q=u,d,s,c,b

3

4
(q(2) + q̄(2)) gq �

8⇡

9↵S
fTGfG . (5.49)

The scattering crosssection between the DM and one nucleon (N=p,n), proton or neutron, is CTEQ
Numerical
values of
the fTq
etc add to
appendix.

CTEQ
Numerical
values of
the fTq
etc add to
appendix.

then given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (5.50)

The leading-order gluon interaction with the DM particles can be calculated in an approximation
in which the heavy quarks are integrated out, since the relevant energy scale for DM direct

10

� �

q q

hi

Figure 3: Generic tree-level diagram contribution to the SI cross section. The mediator S corresponds to the two
Higgs bosons h1 and h2. The quark line q corresponds to all quarks q = u, d, s, c, b, t.
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(b) Mediator Corrections

� �

q q

(c) Box Corrections

Figure 4: Generic one-loop corrections to the scattering of VDM with the nucleon. The grey blob corresponds to
the renormalized one-loop corrections. The corrections can be separated into vertex (a), mediator (b) and box
corrections (c).

resulting in the SI LO cross section

�
LO =

sin2 2↵

4⇡

✓
m�mN

m� +mN

◆2
�
m

2

h1
� m

2

h2

�2

m
4

h1
m

4
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2

N

v2v
2

S

��
X

q=u,d,s

f
N
Tq

+ 3 ·
2

27
f
N
TG

��2 . (4.64)

The twist-2 operator does not contribute to the LO SI cross section. The leading-order cross
section is in agreement with [35],2

5 Dark Matter Direct Detection at One-Loop Order

As a next step, we want to include the NLO EW corrections in the calculation of the SI cross
section. For this, we evaluate the one-loop contributions to the Wilson coe�cients fq and fG in
front of the operators in Eq. (4.56). At this order, also the Wilson coe�cient gq is non-zero for
the first time. The additional topologies contributing at NLO EW are depicted in Fig. 4. Note generic

box
topolo-
gies!

generic
box
topolo-
gies!

that we do not include vertex corrections to the hiq̄q vertex. They are part of the nuclear matrix

find a ref,
or solid
argument

find a ref,
or solid
argument

elements and beyond the scope of our study. For the purpose of our investigation, we assume
them to be encoded in the e↵ective coupling factors of the respective nuclear matrix elements.
In the following, we present the calculation of each topology separately.

5.1 Vertex Corrections ��hi

The e↵ective one-loop coupling ��hi is extracted by considering loop correction to the coupling
��hi, where we take the DM particles on-shell and assume a vanishing momentum for the

2The authors of [35] introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM particle, which
corresponds to |

P
q=u,d,s fTN

q
+ 2

9
fTN

G

��.

11

Loops are calculated - including also CT 
diagrams. The result can be written in 
terms of the form factors or of the 

effective Lagrangian.

Results are translated into interactions 
with nucleons using the matrix elements of 
the quark and gluon operators in a nucleon 

state.
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that is,

and the LO amplitude reads

A
LO

h!⌧⌧
= gh⌧⌧ ū(p⌧ )u(p⌧ ) =

gm⌧ cos↵

2mW

ū(p⌧ )u(p⌧ ) , (3.52)

with u(p⌧ ) (ū(p⌧ )) denoting the spinor (anti-spinor) of the ⌧ with four-momentum p⌧ . Dividing
the weak NLO amplitude into the LO amplitude, the weak virtual corrections to the amplitude,
and the corresponding counterterm part,

A
NLO,weak

h!⌧⌧
= A

LO + A
virt,weak + A

ct
, (3.53)

the condition Eq. (3.50) translates into

A
virt,weak + A

ct = 0 , (3.54)

and we get the mixing angle counterterm in the process-dependent scheme as

�↵ =

✓
2mW

gm⌧ cos↵

◆ h
A

virt,weak + A
ct

��
�↵=0

i
. (3.55)

Here A
ct

��
�↵=0

denotes the complete counterterm amplitude but without the contribution from
�↵.

4 Dark Matter Direct Detection at Tree Level

In the following we want to set our notation and conventions used in the calculation of the
spin-independent (SI) cross section of DM-nucleon scattering. The interaction between the DM
and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
e↵ective operator basis contributing to the SI cross section is given by [49]

L
e↵ =

X

q=u,d,s

L
e↵

q + L
e↵

G , (4.56)

with

L
e↵

q = fq�µ�
µ
mq q̄q +

gq

m2
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�
⇢
i@

µ
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�⇢O

q

µ⌫ , (4.57a)

L
e↵

G = fG�⇢�
⇢
G

a

µ⌫G
aµ⌫

, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],

O
q

µ⌫ =
1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (4.58)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by

hN |mq q̄q |Ni = mNf
N

Tq
(4.59a)

�
9↵S

8⇡
hN |G
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µ⌫G
a,µ⌫

|Ni =

0

@1 �

X

q=u,d,s

f
N

Tq

1

AmN = mNf
N

TG
(4.59b)
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µ⌫ |N(p)i =
1

mN

✓
pµp⌫ �

1

4
m

2

Ngµ⌫

◆ �
q
N (2) + q̄

N (2)
�
, (4.59c)

where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields

fN/mN =
X

q=u,d,s

fqf
N

Tq
+

X

q=u,d,s,c,b

3

4

�
q
N (2) + q̄

N (2)
�
gq �

8⇡

9↵S

f
N

TG
fG . (4.60)

In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
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In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
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the VDM particle and a nucleon, proton or neutron (N = p, n), is given by
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Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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Write the effective Lagrangian

and the LO amplitude reads

A
LO

h!⌧⌧
= gh⌧⌧ ū(p⌧ )u(p⌧ ) =

gm⌧ cos↵

2mW

ū(p⌧ )u(p⌧ ) , (3.52)

with u(p⌧ ) (ū(p⌧ )) denoting the spinor (anti-spinor) of the ⌧ with four-momentum p⌧ . Dividing
the weak NLO amplitude into the LO amplitude, the weak virtual corrections to the amplitude,
and the corresponding counterterm part,

A
NLO,weak

h!⌧⌧
= A

LO + A
virt,weak + A

ct
, (3.53)

the condition Eq. (3.50) translates into

A
virt,weak + A

ct = 0 , (3.54)

and we get the mixing angle counterterm in the process-dependent scheme as

�↵ =

✓
2mW

gm⌧ cos↵

◆ h
A

virt,weak + A
ct

��
�↵=0

i
. (3.55)

Here A
ct

��
�↵=0

denotes the complete counterterm amplitude but without the contribution from
�↵.

4 Dark Matter Direct Detection at Tree Level

In the following we want to set our notation and conventions used in the calculation of the
spin-independent (SI) cross section of DM-nucleon scattering. The interaction between the DM
and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
e↵ective operator basis contributing to the SI cross section is given by [49]

L
e↵ =

X

q=u,d,s

L
e↵

q + L
e↵

G , (4.56)

with

L
e↵

q = fq�µ�
µ
mq q̄q +

gq

m2
�

�
⇢
i@

µ
i@

⌫
�⇢O

q

µ⌫ , (4.57a)

L
e↵

G = fG�⇢�
⇢
G

a

µ⌫G
aµ⌫

, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],

O
q

µ⌫ =
1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (4.58)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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In the following we want to set our notation and conventions used in the calculation of the
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and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
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, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],
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Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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coupling constant ↵s [49].

For vanishing momentum transfer and on-shell nucleon states, the nucleon matrix elements
are given by

hN |mq q̄q |Ni = mNf
N

Tq
(4.59a)
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(4.59b)

hN(p)| Oq

µ⌫ |N(p)i =
1

mN

✓
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1

4
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2

Ngµ⌫

◆ �
q
N (2) + q̄

N (2)
�
, (4.59c)

where N denotes a nucleon, N = p, n, and mN is the nucleon mass. Furthermore, qN (2), q̄N (2)
are the second moments of the parton distribution functions of the quark q(x) and the antiquark
q̄(x), respectively. The four-momentum of the nucleon is denoted by p. The numerical values
for the matrix elements fN

Tq
, fN

TG
and the second moments qN (2) and q̄

N (2) are given in App. A.
The SI e↵ective coupling of the VDM particle with the nucleons is obtained from the nucleon
expectation value of the e↵ective Lagrangian, Eq. (4.56), by applying Eqs. (4.59), which yields

fN/mN =
X

q=u,d,s

fqf
N

Tq
+

X

q=u,d,s,c,b

3

4

�
q
N (2) + q̄

N (2)
�
gq �

8⇡

9↵S

f
N

TG
fG . (4.60)

In the contribution from the quark twist-2 operator all quarks below the energy scale ⇠ 1 GeV
have to be included, i.e. all quarks but the top quark. The SI scattering cross section between
the VDM particle and a nucleon, proton or neutron (N = p, n), is given by

�N =
1

⇡

✓
mN

m� +mN

◆2 ��fN
��2 . (4.61)

Note that the sum in the first term of Eq. (4.60) only extends over the light quarks. The
leading-order gluon interaction with two VDM particles is mediated by one of the two Higgs
bosons which couple to the external gluons through a heavy quark triangle diagram, cf. Fig. 2.
The charm, bottom and top quark masses are larger than the energy scale relevant for DM
direct detection and should therefore be integrated out for the description of the interaction at
the level of the nucleon. By calculating the heavy quark triangle diagrams and then integrating
out the heavy quarks we obtain the related operator in the heavy quark limit. This is equivalent
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Masses and fields are renormalised with on-shell conditions

Renormalisation of the VDM model3.1 Renormalization of the Dark Gauge Coupling g�

As already mentioned the dark gauge coupling g� cannot be linked to a physical observable,
which prevents the usage of OS conditions. Therefore the coupling will be MS renormalised. As
the UV divergence is universal, we just need a vertex involving g�. We have chosen the triple
h1h1h1 vertex. First we write

A
NLO

h1h1h1
= A

LO

h1h1h1
+ A

VC

h1h1h1
+ A

CT

h1h1h1
, (3.36)

where A
VC stands for the amplitude for the virtual corrections to the vertex and A

CT is the
amplitude for the vertex counterterm. We will from now on drop the index h1h1h1 for a better
readability. The counterterm amplitude A

CT consists of two contributions

A
CT = �

mix + �g
CT (3.37)

with

�
mix =

3

2
gh1h1h1�Zh1h1 +

3

2
gh1h1h2�Zh2h1 (3.38)

and

�g
CT =

X

p

@gh1h1h1

@p
�p , p 2 {m

2

h1
, g,mW ,↵, g�} . (3.39)

The divergent part of �g� is then given by
Maggie: I am puzzled by the sign. Can you please give the explicit expression for gh1h1h1 .

�g�

��
div

=

 
m�

3m2

h1
sin3 ↵

!⇣
A

V C + A
CT
��
�g�=0

⌘ ��
div

. (3.40)

In Fig. 1 we present the set of diagrams used to calculate A
V C . The one-loop diagrams were

generated with FeynArts [14] for which the model file was obtained with SARAH [15–18] and the
program package FeynCalc [19, 20] was used to reduce the amplitudes to Passarino-Veltmann
integrals [21]. The numerical evaluation of the integrals was done by Collier [22–25]. The
counterterm g� in the MS scheme is then obtained as

�g�

��
"
=

g
3
�

96⇡2
�" , (3.41)

with �" =
1

" � �E + ln 4⇡, and �E is the Euler-Mascheroni constant.

3.2 Renormalization of the Scalar Mixing Angle ↵

The last parameter that needs to be renormalised is the mixing angle ↵. Again, this is a
quantity that cannot be related directly to an observable, except if we would use a process-
dependent renormalisation which is known to lead to unphysically large counterterms [26].
The renormalisation of the mixing angles in SM extensions was thoroughly discussed in [26,27].
In this work we will use a scheme first proposed in [28] which for the derivation of the angle
counterterm, connects the usual OS conditions of the scalar field with the relations between the
gauge basis and the mass basis. The bare parameter expressed through the renormalised one
and the counterterm reads

↵0 = ↵+ �↵ . (3.42)
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from the two sectors will not mix at any order of perturbation theory and therefore the field
renormalisation constants are defined independently in each sector. We choose to renormalise
the theory in the mass basis. The replacement of the parameters in the two gauge sectors reads

m
2

W ! m
2

W + �m
2

W , (3.18a)

m
2

Z ! m
2

Z + �m
2

Z , (3.18b)

m
2

� ! m
2

� + �m
2

� , (3.18c)

e ! e+ �Ze e , (3.18d)

g ! g + �g , (3.18e)

g� ! g� + �g� , (3.18f)

where mW and mZ are the masses of the electroweak charged and neutral gauge bosons W
±

and Z, respectively, e is the electric coupling constant, and g the weak SU(2) coupling. The
gauge boson fields are renormalised by their field renormalisation constants �Z,

� !

✓
1 +

1

2
�Z��

◆
� , (3.19a)

W
±

!

✓
1 +

1

2
�ZWW

◆
W

±
, (3.19b)

✓
Z

�

◆
!

✓
1 + 1

2
�ZZZ

1

2
�ZZ�

1

2
�Z�Z 1 + 1

2
�Z��

◆ ✓
Z

�

◆
. (3.19c)

The on-shell (OS) conditions yield the following expressions for the mass counterterms of the
gauge sector

�m
2

W = Re⌃T

WW

�
m

2

W

�
, �m

2

Z = Re⌃T

ZZ

�
m

2

Z

�
and �m

2

� = Re⌃T

��

�
m

2

�

�
, (3.20)

where T denotes the transverse part of the self-energies ⌃ii (i = W,Z,�). Expressing the electric
charge in terms of the Weinberg angle ✓W

e = g sin ✓W , with cos ✓W =
mW

mZ

, (3.21)

and using OS conditions for the renormalisation of the electric charge allows for the determina-
tion of the counterterm �g in terms of the mass counterterms �mW , �mZ and �Ze

2

�Ze =
1

2

@⌃T
��(p

2)

@p2

����
p2=0

+
sW

cW

⌃T

�Z
(0)

m
2

Z

, (3.22)

�g

g
= �Ze +

1

2

1

m
2

Z
� m

2

W

�
�m

2

W � c
2

W �m
2

Z

�
. (3.23)

The wave function renormalisation constants guaranteeing the correct OS properties are given
by

�Z�� = �Re
@⌃2

��(p
2)

@p2

����
p2=m2

�

, �ZWW = �Re
@⌃2

WW
(p2)

@p2

����
p2=m

2

W

, (3.24)

2We use the shorthand notation sin ✓W = sW and cos ✓W = cW .
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The on-shell (OS) conditions yield the following expressions for the mass counterterms of the
gauge sector
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where T denotes the transverse part of the self-energies ⌃ii (i = W,Z,�). Expressing the electric
charge in terms of the Weinberg angle ✓W

e = g sin ✓W , with cos ✓W =
mW

mZ
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and using OS conditions for the renormalisation of the electric charge allows for the determina-
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The wave function renormalisation constants guaranteeing the correct OS properties are given
by
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2We use the shorthand notation sin ✓W = sW and cos ✓W = cW .
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✓
�ZZZ �ZZ�

�Z�Z �Z��

◆
=

0

BBB@

�Re
@⌃

T

ZZ
(p

2
)

@p2

����
p2=m

2

Z

2
⌃

T

Z�
(0)

m
2

Z

�2
⌃

T

Z�
(0)

m
2

Z

�Re
@⌃

T
��(p

2
)

@p2

����
p2=0

1

CCCA
. (3.25)

As for the gauge coupling from the dark sector, g�, since there is no obvious physical quantity
to fix the renormalisation constant, we will renormalise it using the MS scheme, which will be
described in detail in Section 3.1.

Higgs Sector: In the VDM model we have two scalar fields which mix, namely the real
component �H of the Higgs doublet and the real component �S of the singlet, yielding the mass
eigenstates h1 and h2. This mixing has to be accounted for in the field renormalisation constants
(see Eq. (3.17)) so that the corresponding matrix reads

✓
h1

h2

◆
!

✓
1 + 1

2
�Zh1h1

1

2
�Zh1h2

1

2
�Zh2h1

1 + 1

2
�Zh2h2

◆✓
h1

h2

◆
. (3.26)

In the mass eigenbasis, the mass matrix in Eq. (2.7) yields

Mh1h2
=

✓
m

2

h1
0

0 m
2

h2

◆

| {z }
⌘M2

+R↵

✓
T�H

/v 0
0 T�S

/vS

◆
R

T

↵

| {z }
⌘�T

. (3.27)

The tadpole terms in the tree-level mass matrix are bare parameters. At next-to-leading order
(NLO) they obtain a shift that corresponds to the change of the vacuum state of the poten-
tial through electroweak corrections. To avoid such vacuum shifts at NLO, we renormalise the
tadpoles such that the VEV remains at its tree-level value also at NLO. This requires the intro-
duction of tadpole counterterms �Ti such that the one-loop renormalised one-point T̂i function
vanishes

T̂i = Ti � �Ti

!
= 0 , i = �H ,�S . (3.28)

Since we formulate all counterterms in the mass basis it is convenient to rotate the tadpole
parameters in their corresponding mass basis as well, using the same rotation matrix R↵,

✓
Th1

Th2

◆
= R↵ ·

✓
T�h

T�S

◆
. (3.29)

For the mass counterterms of the Higgs sector we replace the mass matrix as

Mh1h2
! Mh1h2

+ �Mh1h2
, (3.30)

with the one-loop counterterm

�Mh1h2
=

✓
�m

2

h1
0

0 �m
2

h2

◆
+R↵

 
�T�H

v
0

0
�T�S

vS

!
R

T

↵ ⌘

✓
�m

2

h1
0

0 �m
2

h2

◆
+

✓
�Th1h1

�Th1h2

�Th2h1
�Th2h2

◆
.

(3.31)
In Eq. (3.31) we neglect all terms of order O (�↵�Ti) since they are formally of two-loop order.
Using OS conditions and Eq. (3.31) finally yields the following relations for the counterterms
(i = 1, 2)

�m
2

hi
= Re

⇥
⌃hihi

(m2

hi
) � �Thihi

⇤
, (3.32)
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�Zhihi
= �Re


@⌃hihi

(p2)

@p2

�

p2=m
2

hi

, (3.33)

�Zhihj
=

2

m
2

hi
� m

2

hj

Re
h
⌃hihj

(m2

hj
) � �Thihj

i
, i 6= j . (3.34)

3.1 Renormalisation of the Dark Gauge Coupling g�

As previously mentioned, the dark gauge coupling g� cannot be linked to a physical observable,
which prevents the usage of OS conditions for its renormalisation. Therefore the coupling will
be renormalised using the MS scheme. As the UV divergence is universal, we just need a vertex
involving g�. We choose the triple h1h1h1 vertex. First we write

A
NLO

h1h1h1
= A

LO

h1h1h1
+ A

VC

h1h1h1
+ A

CT

h1h1h1
, (3.35)

where A
VC stands for the amplitude for the virtual corrections to the vertex and A

CT is the
amplitude for the vertex counterterm. We will henceforth drop the index h1h1h1 for better
readability. The counterterm amplitude A

CT consists of two contributions,

A
CT = �

mix + �g
CT (3.36)

with

�
mix =

3

2
gh1h1h1

�Zh1h1
+

3

2
gh1h1h2

�Zh2h1
(3.37)

and

�g
CT =

X

p

@gh1h1h1

@p
�p , p 2 {mh1

,mh2
,m�, v,↵, g�} . (3.38)

The trilinear Higgs self-coupling reads (expressing v through 2mW /g)

gh1h1h1
= �

3gm2

h1

2mW

cos3 ↵ �
3g�m2

h1

m�

sin3 ↵ . (3.39)

The divergent part of �g� is then given by

�g�

��
div

=

 
m�

3m2

h1
sin3 ↵

!⇣
A

VC + A
CT
��
�g�=0

⌘ ��
div

. (3.40)

In Fig. 1 we present the set of diagrams used to calculate A
VC. The one-loop diagrams were

generated with FeynArts [21] for which the model file was obtained with SARAH [22–25] and the
program package FeynCalc [26, 27] was used to reduce the amplitudes to Passarino-Veltmann
integrals [28]. The numerical evaluation of the integrals was done by Collier [29–32]. The
counterterm g� in the MS scheme is then obtained as

�g�

��
"
=

g
3
�

96⇡2
�" , (3.41)

with

�" =
1

"
� �E + ln 4⇡ , (3.42)

where �E denotes the Euler-Mascheroni constant.
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Figure 1: Generic diagrams contributing to AV C
h1h1h1

. Here F denotes fermions, S scalars, and V gauge bosons.
We should explicitly list what F , S and V are.

Considering the field strength renormalisation before the rotation,
✓
h1

h2

◆
= R (↵+ �↵)

p
Z�

✓
�H

�S

◆
, (3.43)

and expanding this to strict one-loop order,

R (↵+ �↵)
p

Z�

✓
�H

�S

◆
= R(�↵)R(↵)

p
Z�R(↵)T| {z }

!
=
p
ZH

R(↵)

✓
�H

�S

◆
+O(�↵2) =

p
ZH

✓
h1

h2

◆
, (3.44)

yields the field strength renormalisation matrix
p
ZH connecting the bare and renormalised fields

in the mass basis. Using the rotation matrix expanded at one-loop order results in

p
ZH = R(�↵)

 
1 +

�Zh1h1
2

�Cj

�Ch 1 +
�Zh2h2

2

!
⇡

 
1 +

�Zh1h1
2

�Ch + �↵

�Ch � �↵ 1 +
�Zh2h2

2

!
. (3.45)

Demanding that the field mixing vanishes on the mass shell is equivalent with the identification
of the o↵ diagonal elements of

p
ZH with those in Eq. (3.27),

�Zh1h2

2
!
= �Ch + �↵ and

�Zh2h1

2
!
= �Ch � �↵ . (3.46)

With Eq. (3.35) the mixing angle counterterm reads

�↵ =
1

4
(�Zh1h2 � �Zh2h1) (3.47)

=
1

2(m2

h1
� m

2

h2
)
Re
�
⌃h1h2(m

2

h1
) + ⌃h1h2(m

2

h2
) � 2�Th1h2

�
. (3.48)
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Demanding that the field mixing vanishes on the mass shell is equivalent to identifying the
o↵-diagonal elements of

p
ZH with those in Eq. (3.26),

�Zh1h2

2
!
= �Ch + �↵ and

�Zh2h1

2
!
= �Ch � �↵ . (3.47)

With Eq. (3.34) the mixing angle counterterm reads

�↵ =
1

4
(�Zh1h2

� �Zh2h1
) (3.48)

=
1

2(m2

h1
� m

2

h2
)
Re
�
⌃h1h2

(m2

h1
) + ⌃h1h2

(m2

h2
) � 2�Th1h2

�
. (3.49)

In our numerical analysis we will use two more renormalisation schemes for �↵: the MS
scheme and a process-dependent scheme. In the MS scheme we only take the counterterm �↵ into
account in the divergent parts inD = 4 dimensions. Applying dimensional regularisation [47,48],
these are the terms proportional to 1/✏, where D = 4� 2✏. Both the KOSY scheme and the MS
scheme lead to a gauge-parameter dependent definition of �↵ This is avoided if �↵ is defined
through a physical process.

In our process-dependent renormalisation scheme for ↵, discussed in the numerical results,
we define the counterterm �↵ through the process h ! ⌧⌧ , where h denotes the SM-like scalar of
the two hi (i = 1, 2). The counterterm is defined by requiring the NLO decay width to be equal
to the LO one. The NLO corrections involve infrared (IR) divergences stemming from the QED
corrections. Since they form a UV-finite subset, this allows us to apply the renormalisation
condition solely on the weak sector thus avoiding the IR divergences, i.e. we require for the
NLO and LO amplitudes of the decay process

A
NLO,weak

h!⌧⌧

!
= A

LO

h!⌧⌧
, (3.50)

where ’weak’ refers to the weak part of the NLO amplitude. The h coupling to ⌧ ⌧̄ depends on
the mixing angle ↵ as

gh⌧⌧ =
gm⌧ cos↵

2mW

, (3.51)
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and the LO amplitude reads

A
LO

h!⌧⌧
= gh⌧⌧ ū(p⌧ )u(p⌧ ) =

gm⌧ cos↵

2mW

ū(p⌧ )u(p⌧ ) , (3.52)

with u(p⌧ ) (ū(p⌧ )) denoting the spinor (anti-spinor) of the ⌧ with four-momentum p⌧ . Dividing
the weak NLO amplitude into the LO amplitude, the weak virtual corrections to the amplitude,
and the corresponding counterterm part,

A
NLO,weak

h!⌧⌧
= A

LO + A
virt,weak + A

ct
, (3.53)

the condition Eq. (3.50) translates into

A
virt,weak + A

ct = 0 , (3.54)

and we get the mixing angle counterterm in the process-dependent scheme as

�↵ =

✓
2mW

gm⌧ cos↵

◆ h
A

virt,weak + A
ct

��
�↵=0

i
. (3.55)

Here A
ct

��
�↵=0

denotes the complete counterterm amplitude but without the contribution from
�↵.

4 Dark Matter Direct Detection at Tree Level

In the following we want to set our notation and conventions used in the calculation of the
spin-independent (SI) cross section of DM-nucleon scattering. The interaction between the DM
and the nucleon is described in terms of e↵ective coupling constants. The major contribution
to the cross section comes from the light quarks q = u, d, s and gluons. For the VDM model the
e↵ective operator basis contributing to the SI cross section is given by [49]

L
e↵ =

X

q=u,d,s

L
e↵

q + L
e↵

G , (4.56)

with

L
e↵

q = fq�µ�
µ
mq q̄q +

gq

m2
�

�
⇢
i@

µ
i@

⌫
�⇢O

q

µ⌫ , (4.57a)

L
e↵

G = fG�⇢�
⇢
G

a

µ⌫G
aµ⌫

, (4.57b)

where G
a
µ⌫ (a = 1, ..., 8) denotes the gluon field strength tensor and O

q
µ⌫ the quark twist-2

operator corresponding to the traceless part of the energy-momentum tensor of the nucleon
[50,51],

O
q

µ⌫ =
1

2
q̄i

✓
@µ�⌫ + @⌫�µ �

1

2
/@

◆
q . (4.58)

Operators suppressed by the DM velocities and the momentum transfer of the DM particle to
the nucleon are neglected in the analysis. Furthermore, we neglect contributions introduced
by the gluon twist-2 operator O

g
µ⌫ , since these contributions are one order higher in the strong
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Tried other schemes for the angles,   and process dependentMS

We therefore conclude that the KOSY scheme should be used in the computation of the NLO
corrections. The fact that it is gauge dependent is no problem as long as the chosen gauge
is clearly stated when presenting results. Moreover, by applying a pinched scheme, the gauge
dependence can be avoided, cf. Ref. [33]. This is left for future work.
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Figure 14: The K-factor versus the LO SI direct detection cross section for the whole data sample passing all
constraints and for three di↵erent renormalisation schemes of ↵: the KOSY scheme (yellow), the process-dependent
scheme (green), the MS scheme (violet).

The uncertainty due to missing higher-order corrections can be estimated by varying the
renormalisation scheme or by varying the renormalisation scale. The comparison of the KOSY
with the other two renormalisation schemes makes no sense as the latter lead to unacceptably
large corrections. The KOSY scheme does not allow us to vary the renormalisation scale, so
that we cannot provide an estimate of the uncertainty due to missing higher order corrections.
We conclude with the remark that the variation of the renormalisation scale between 1/2 and 2
times the scale µ0 in the MS scheme leads to a variation of the NLO cross section of about 16%
- in contrast to the unphysically large corrections that are to be traced back to the blowing-up
of the MS counterterm of ↵.

6.1.6 Phenomenological Impact of the NLO Corrections on the Xenon Limit

We now turn to the discussion of the phenomenological impact of our NLO results. In Fig. 15
(left) we show the LO direct detection cross section (blue points) and the NLO result (orange)
compared to the Xenon limit (blue-dashed), as a function of the DM particle mass. For the
consistent comparison with the Xenon limit we applied the correction factor f�� (Eq. 6.91) to
the LO and NLO cross section in both plots of Fig. 15. In the left figure we plot all parameter
points where the LO cross section does not exceed the Xenon limit but the NLO result does.
This plot shows that for a sizeable number of parameter points, the compatibility with the
experimental constraints would not hold at NLO any more. This demonstrates that the NLO
corrections are important and need to be accounted for in order to make reliable predictions
about the viable parameter space of the VDM model.

In the right plot we display the same quantities, but only for parameter points of our data
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Figure 5: Generic diagrams contributing to the virtual corrections to the vertex ��hi. The generic symbols denote
F fermions, S scalars and V gauge bosons.

In Fig. 5 all contributing NLO diagrams are shown, where S denotes scalars, F fermions
and V vector bosons. At NLO an additional tensor structure arises in the amplitude. Let
pin be the incoming momentum and pout the outgoing momentum of the DM vector gauge
boson. Assuming zero momentum transfer is equivalent to assuming pin = pout. Note that this
assumption is stricter than simply assuming p

2

in
= p

2
out, since this only implies the same masses

for the incoming and outgoing particles. The additional new tensor structure (denoted by ⇠

NLO) is given by

iA
NLO = (. . . ) "(pin) · "

⇤(pout)| {z }
⇠LO

+(. . . ) (pin · "
⇤(pout)) (pout · "(pin))| {z }

⇠NLO

. (5.72)

The additional NLO tensor structure vanishes by assuming pin = pout, and because for freely
propagating gauge bosons we have "(p) · p = 0. The counterterms in Eq. (5.68) cancel all
UV-poles of the virtual vertex corrections in Fig. 5 which has been checked both analytically
and numerically. Accounting for the symmetry factor of the amplitude and projecting onto
the corresponding tensor structure, the vertex corrections are plugged in the generic diagram in
Fig. 4(a) which contributes to the operator �µ�

µ
mq q̄q. We will refer to the resulting contribution

as fvertex
q . Since the expression it quite lengthy, we do not give the explicit formula here.

5.2 Mediator Corrections

We proceed in a similar way for the mediator corrections. We calculate the self-energy corrections
to the two-point functions with all possible combinations of external Higgs fields and plug these
into the one-loop propagator in the generic amplitude in Fig. 4(b). The self-energy contribution
to the hihj propagator (i, j = 1, 2) reads

�hihj
= �

⌃̂hihj
(p2 = 0)

m
2

hi
m

2

hj

, (5.73)

with the renormalised self-energy matrix
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Figure 4: Generic one-loop corrections to the scattering of VDM with the nucleon. The grey blob corresponds to
the renormalized one-loop corrections. The corrections can be separated into vertex (a), mediator (b) and box
corrections (c).

not include vertex corrections to the hiq̄q vertex. They are partly given by the nuclear matrix
elements and beyond the scope of our study. For the purpose of our investigation, we assume
them to be encoded in the e↵ective coupling factors of the respective nuclear matrix elements.
In the following, we present the calculation of each topology separately.

5.1 Vertex Corrections ��hi

The e↵ective one-loop coupling ��hi is extracted by considering loop corrections to the coupling
��hi, where we take the DM particles to be on-shell and assume a vanishing momentum for the
Higgs boson hi. The amplitude for the NLO vertex including the polarisation vectors "(⇤) of the
external VDM particles, is given by

iA
NLO

��hi
= iA

LO

��hi
+ iA

VC

��hi
+ iA

CT

��hi
, (5.66)

with the leading-order amplitude iA
LO

��hi
, the virtual vertex corrections iA

VC

��hi
and the vertex

counterterm iA
CT

��hi
. Denoting by p the four-momentum of the incoming VDM particle, the

tree-level amplitude is given by

iA
LO

��hi
= g��hi

"(p) · "
⇤(p) = 2g�m�"(p) · "

⇤(p)

(
sin↵ , i = 1

cos↵ , i = 2
. (5.67)

The vertex counterterm amplitudes for i = 1, 2 read
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
1

2
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⇤(p) , (5.68b)

with the counterterms �g��hi
(i = 1, 2) for the couplings

g��h1
= 2g�m� sin↵ (5.69)

g��h2
= 2g�m� cos↵ (5.70)

derived from

�g��hi
=

X

p

@g��hi

@p
, p 2 {m�, g�,↵} . (5.71)

12

� �

q q

hi

(a) Vertex Corrections

� �

q q

hj

hi

(b) Mediator Corrections

� �

q q

(c) Box Corrections

Figure 4: Generic one-loop corrections to the scattering of VDM with the nucleon. The grey blob corresponds to
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not include vertex corrections to the hiq̄q vertex. They are partly given by the nuclear matrix
elements and beyond the scope of our study. For the purpose of our investigation, we assume
them to be encoded in the e↵ective coupling factors of the respective nuclear matrix elements.
In the following, we present the calculation of each topology separately.

5.1 Vertex Corrections ��hi

The e↵ective one-loop coupling ��hi is extracted by considering loop corrections to the coupling
��hi, where we take the DM particles to be on-shell and assume a vanishing momentum for the
Higgs boson hi. The amplitude for the NLO vertex including the polarisation vectors "(⇤) of the
external VDM particles, is given by
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not include vertex corrections to the hiq̄q vertex. They are partly given by the nuclear matrix
elements and beyond the scope of our study. For the purpose of our investigation, we assume
them to be encoded in the e↵ective coupling factors of the respective nuclear matrix elements.
In the following, we present the calculation of each topology separately.

5.1 Vertex Corrections ��hi

The e↵ective one-loop coupling ��hi is extracted by considering loop corrections to the coupling
��hi, where we take the DM particles to be on-shell and assume a vanishing momentum for the
Higgs boson hi. The amplitude for the NLO vertex including the polarisation vectors "(⇤) of the
external VDM particles, is given by
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with the leading-order amplitude iA
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, the virtual vertex corrections iA
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. Denoting by p the four-momentum of the incoming VDM particle, the
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with the counterterms �g��hi
(i = 1, 2) for the couplings
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= 2g�m� cos↵ (5.70)
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Figure 5: Generic diagrams contributing to the virtual corrections to the vertex ��hi. The generic symbols denote
F fermions, S scalars and V gauge bosons.

In Fig. 5 all contributing NLO diagrams are shown, where S denotes scalars, F fermions
and V vector bosons. At NLO an additional tensor structure arises in the amplitude. Let
pin be the incoming momentum and pout the outgoing momentum of the DM vector gauge
boson. Assuming zero momentum transfer is equivalent to assuming pin = pout. Note that this
assumption is stricter than simply assuming p

2

in
= p

2
out, since this only implies the same masses

for the incoming and outgoing particles. The additional new tensor structure (denoted by ⇠

NLO) is given by

iA
NLO = (. . . ) "(pin) · "

⇤(pout)| {z }
⇠LO

+(. . . ) (pin · "
⇤(pout)) (pout · "(pin))| {z }

⇠NLO

. (5.72)

The additional NLO tensor structure vanishes by assuming pin = pout, and because for freely
propagating gauge bosons we have "(p) · p = 0. The counterterms in Eq. (5.68) cancel all
UV-poles of the virtual vertex corrections in Fig. 5 which has been checked both analytically
and numerically. Accounting for the symmetry factor of the amplitude and projecting onto
the corresponding tensor structure, the vertex corrections are plugged in the generic diagram in
Fig. 4(a) which contributes to the operator �µ�

µ
mq q̄q. We will refer to the resulting contribution

as fvertex
q . Since the expression it quite lengthy, we do not give the explicit formula here.

5.2 Mediator Corrections

We proceed in a similar way for the mediator corrections. We calculate the self-energy corrections
to the two-point functions with all possible combinations of external Higgs fields and plug these
into the one-loop propagator in the generic amplitude in Fig. 4(b). The self-energy contribution
to the hihj propagator (i, j = 1, 2) reads

�hihj
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(p2 = 0)

m
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, (5.73)

with the renormalised self-energy matrix

✓
⌃̂h1h1

⌃̂h1h2

⌃̂h2h1
⌃̂h2h2

◆
⌘ ⌃̂(p2) = ⌃(p2) � �m

2
� �T +

�Z

2

�
p
2
� M

2
�
+

�
p
2
� M

2
� �Z

2
, (5.74)

13

We write the amplitude as a decay  to 
extract the relevant terms.

χ → χhi

Loops are calculated - virtual corrections and CT diagrams are included. CT terms have the same 
structure as the tree-level

and virtual corrections have two terms 

And since we work in the approximation that the momentum of the incoming DM particle is equal to the 
momentum of the outgoing DM particle, the LO and NLO contributions have the same structure.

Back to the coefficients
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not include vertex corrections to the hiq̄q vertex. They are partly given by the nuclear matrix
elements and beyond the scope of our study. For the purpose of our investigation, we assume
them to be encoded in the e↵ective coupling factors of the respective nuclear matrix elements.
In the following, we present the calculation of each topology separately.

5.1 Vertex Corrections ��hi

The e↵ective one-loop coupling ��hi is extracted by considering loop corrections to the coupling
��hi, where we take the DM particles to be on-shell and assume a vanishing momentum for the
Higgs boson hi. The amplitude for the NLO vertex including the polarisation vectors "(⇤) of the
external VDM particles, is given by

iA
NLO

��hi
= iA

LO

��hi
+ iA

VC

��hi
+ iA

CT

��hi
, (5.66)

with the leading-order amplitude iA
LO

��hi
, the virtual vertex corrections iA

VC

��hi
and the vertex

counterterm iA
CT

��hi
. Denoting by p the four-momentum of the incoming VDM particle, the

tree-level amplitude is given by

iA
LO

��hi
= g��hi

"(p) · "
⇤(p) = 2g�m�"(p) · "

⇤(p)

(
sin↵ , i = 1

cos↵ , i = 2
. (5.67)

The vertex counterterm amplitudes for i = 1, 2 read

iA
CT

�!�h1
=


1

2
(g��h2

�Zh2h1
+ g��h1

�Zh1h1
) + g��h1

�Z�� + �g��h1

�
"(p) · "

⇤(p) (5.68a)

iA
CT

�!�h2
=


1

2
(g��h1

�Zh1h2
+ g��h2

�Zh2h2
) + g��h2

�Z�� + �g��h2

�
"(p) · "

⇤(p) , (5.68b)

with the counterterms �g��hi
(i = 1, 2) for the couplings

g��h1
= 2g�m� sin↵ (5.69)

g��h2
= 2g�m� cos↵ (5.70)

derived from

�g��hi
=

X

p

@g��hi

@p
, p 2 {m�, g�,↵} . (5.71)

12



Mediator corrections

S = {hi, G�} S, V = {hi, G�}, {X} S, V = {hi, G�}, {X} S, V = {hi}, {X}

S, V = {hi}, {X} S, V = {hi}, {X} S, V = {hi}, {X} S = {hi, G�}
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In Fig. 5 all contributing NLO diagrams are shown, where S denotes scalars, F fermions
and V vector bosons. At NLO an additional tensor structure arises in the amplitude. Let
pin be the incoming momentum and pout the outgoing momentum of the DM vector gauge
boson. Assuming zero momentum transfer is equivalent to assuming pin = pout. Note that this
assumption is stricter than simply assuming p
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The additional NLO tensor structure vanishes by assuming pin = pout, and because for freely
propagating gauge bosons we have "(p) · p = 0. The counterterms in Eq. (5.68) cancel all
UV-poles of the virtual vertex corrections in Fig. 5 which has been checked both analytically
and numerically. Accounting for the symmetry factor of the amplitude and projecting onto
the corresponding tensor structure, the vertex corrections are plugged in the generic diagram in
Fig. 4(a) which contributes to the operator �µ�

µ
mq q̄q. We will refer to the resulting contribution

as fvertex
q . Since the expression it quite lengthy, we do not give the explicit formula here.

5.2 Mediator Corrections

We proceed in a similar way for the mediator corrections. We calculate the self-energy corrections
to the two-point functions with all possible combinations of external Higgs fields and plug these
into the one-loop propagator in the generic amplitude in Fig. 4(b). The self-energy contribution
to the hihj propagator (i, j = 1, 2) reads
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resulting in the SI LO cross section
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The twist-2 operator does not contribute to the LO SI cross section. The leading-order cross
section is in agreement with [35],2

5 Dark Matter Direct Detection at One-Loop Order

As a next step, we want to include the NLO EW corrections in the calculation of the SI cross
section. For this, we evaluate the one-loop contributions to the Wilson coe�cients fq and fG in
front of the operators in Eq. (4.56). At this order, also the Wilson coe�cient gq is non-zero for
the first time. The additional topologies contributing at NLO EW are depicted in Fig. 4. Note generic

box
topolo-
gies!

generic
box
topolo-
gies!

that we do not include vertex corrections to the hiq̄q vertex. They are part of the nuclear matrix

find a ref,
or solid
argument

find a ref,
or solid
argument

elements and beyond the scope of our study. For the purpose of our investigation, we assume
them to be encoded in the e↵ective coupling factors of the respective nuclear matrix elements.
In the following, we present the calculation of each topology separately.

5.1 Vertex Corrections ��hi

The e↵ective one-loop coupling ��hi is extracted by considering loop correction to the coupling
��hi, where we take the DM particles on-shell and assume a vanishing momentum for the

2The authors of [35] introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM particle, which
corresponds to |

P
q=u,d,s fTN

q
+ 2

9
fTN

G

��.

11

S = {hi, G�} S, V = {hi, G�}, {X} S, V = {hi, G�}, {X} S, V = {hi}, {X}

S, V = {hi}, {X} S, V = {hi}, {X} S, V = {hi}, {X} S = {hi, G�}

Figure 5: Generic diagrams contributing to the virtual corrections to the vertex ��hi. The generic symbols denote
F fermions, S scalars and V gauge bosons.

In Fig. 5 all contributing NLO diagrams are shown, where S denotes scalars, F fermions
and V vector bosons. At NLO an additional tensor structure arises in the amplitude. Let
pin be the incoming momentum and pout the outgoing momentum of the DM vector gauge
boson. Assuming zero momentum transfer is equivalent to assuming pin = pout. Note that this
assumption is stricter than simply assuming p

2

in
= p

2
out, since this only implies the same masses

for the incoming and outgoing particles. The additional new tensor structure (denoted by ⇠

NLO) is given by

iA
NLO = (. . . ) "(pin) · "

⇤(pout)| {z }
⇠LO

+(. . . ) (pin · "
⇤(pout)) (pout · "(pin))| {z }

⇠NLO

. (5.72)

The additional NLO tensor structure vanishes by assuming pin = pout, and because for freely
propagating gauge bosons we have "(p) · p = 0. The counterterms in Eq. (5.68) cancel all
UV-poles of the virtual vertex corrections in Fig. 5 which has been checked both analytically
and numerically. Accounting for the symmetry factor of the amplitude and projecting onto
the corresponding tensor structure, the vertex corrections are plugged in the generic diagram in
Fig. 4(a) which contributes to the operator �µ�

µ
mq q̄q. We will refer to the resulting contribution

as fvertex
q . Since the expression it quite lengthy, we do not give the explicit formula here.

5.2 Mediator Corrections

We proceed in a similar way for the mediator corrections. We calculate the self-energy corrections
to the two-point functions with all possible combinations of external Higgs fields and plug these
into the one-loop propagator in the generic amplitude in Fig. 4(b). The self-energy contribution
to the hihj propagator (i, j = 1, 2) reads

�hihj
= �

⌃̂hihj
(p2 = 0)

m
2

hi
m

2

hj

, (5.73)

with the renormalised self-energy matrix

✓
⌃̂h1h1

⌃̂h1h2

⌃̂h2h1
⌃̂h2h2

◆
⌘ ⌃̂(p2) = ⌃(p2) � �m

2
� �T +

�Z

2

�
p
2
� M

2
�
+

�
p
2
� M

2
� �Z

2
, (5.74)
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Figure 6: Generic diagrams of the box topology contributing to the SI cross section. The symbol S denotes
scalars, F fermions and V vector bosons. The flavour of the fermion F and the external quark q are the same as
we set the CKM matrix equal to the unit matrix.

where the mass matrix M and the tadpole counterterm matrix �T are defined in Eq. (3.27). The
Z-factor matrix �Z corresponds to the matrix with the components �Zhihj

defined in Eq. (3.34).
Projecting the resulting one-loop correction on the corresponding tensor structure, we obtain
the e↵ective one-loop correction to the Wilson coe�cient of the operator �µ�

µ
mq q̄q induced by

the mediator corrections as

f
med

q =
gg�m�

2mW

X

i,j

R↵,i2R↵,j1�hihj
, (5.75)

with the rotation matrix R↵ defined in Eq. (2.8).

5.3 Box Corrections

We now turn to the box corrections. The generic set of diagrams representative of the box
topology is depicted in Fig. 6. In the following, we present the treatment of box diagrams
contributing to the SI cross section. In order to extract for the spin-independent cross section
the relevant tensor structures from the box diagram, we expand the loop diagrams in terms of
the momenta pq of the external quark that is not relativistic [12]. Since we are considering zero
momentum transfer, the incoming and outgoing momenta of the quark are the same,

p
in

q = p
out

q . (5.76)

Note that as in the case of the vertex corrections this requirement is stricter than requiring
that the squared momenta are the same, since this only implies same masses for incoming and
outgoing particles. Assuming small quark momenta, and because the mass of the light quarks
is much smaller than the energy scale of the interaction, allows for the simplification of the
propagator terms arising in the box diagrams through the expansion,

1

(l ± pq)2 � m2
q

=
1

l2
⌥

2pq · l

l4
+ O(p2q/l

4) , (5.77)

where l is the loop momentum of the box diagram, mq the mass of the quark and where we use
m

2
q = p

2
q . After applying this expansion to the box diagrams, the result has to be projected onto

the required tensor structures contributing to the operators in Eq. (4.57). The box diagrams
contribute to XµX

µ
mq q̄q and the twist-2 operators. By rewriting [13,50,51]

q̄i@µ�⌫q = O
q

µ⌫ + q̄
i@µ�⌫ � i@⌫�µ

2
q +

1

4
gµ⌫mq q̄q , (5.78)

the parts of the loop amplitude that correspond to the twist-2 and the XµX
µ
mq q̄q operator can

be extracted. The asymmetric part in Eq. (5.78) does not contribute to the SI cross section
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Again because we are working in the approximation of zero momentum 
exchange the contribution from the mediators can be written as

Projecting the one-loop correction on the corresponding tensor structure we obtain the one-loop correction to the 
Wilson coefficient of the operator   induced by the mediator corrections asmq χχq̄q

with

boson �µ and the scalar field S transform under the Z2 symmetry as follows

�µ ! ��µ and S ! S
⇤
, (2.1)

and the SM particles are all even under Z2, which precludes kinetic mixing between the gauge
bosons from U(1)� and the SM U(1)Y . As the singlet S is charged under the dark U(1)�, its
covariant derivative reads

DµS = (@µ + ig��µ)S , (2.2)

where g� is the gauge coupling of the dark gauge boson �µ.

The most general Higgs potential invariant under the SM and the Z2 symmetries can be
written as

V = �µ
2

H |H|
2 + �H |H|

4
� µ

2

S |S|
2 + �S |S|

4 + |S|
2
|H|

2
, (2.3)

in terms of the squared mass parameters µ2

H
, µ2

S
and the quartic couplings �H , �S and . The

neutral component of the Higgs doublet H and the real part of the singlet field each acquire a
vacuum expectation value (VEV) v and vS , respectively. The expansions around their VEVs
can be written as

H =

 
G

+

1p
2
(v + �H + i�H)

!
and S =

1
p
2
(vS + �S + i�S) , (2.4)

where �H and �S denote the CP-even field components of H and S. The CP-odd field com-
ponents �H and �S do not acquire VEVs and are therefore identified with the neutral SM-like
Goldstone boson G

0 and the Goldstone boson G
� for the gauge boson �µ, respectively, while

G
± are the Goldstone bosons of the W bosons. The minimum conditions of the potential yield

the tadpole equations

⌧
@V

@�H

�
⌘

T�H

v
=

✓
v

2

S

2
+ �Hv

2
� µ

2

H

◆
, (2.5)

⌧
@V

@�S

�
⌘

T�S

vS
=

✓
v

2

2
+ �Sv

2

S � µ
2

S

◆
, (2.6)

which allow the scalar mass matrix to be expressed as

M�h�S
=

✓
2�Hv

2
vvS

vvS 2�Sv
2

S

◆
+

 
T�H

v
0

0
T�S

vS

!
. (2.7)

The treatment of the tadpole contributions in the mass matrix will be discussed in Section 3 while
describing the renormalisation of the tadpoles. The mass eigenstates h1 and h2 are obtained
through the rotation with the orthogonal matrix R↵ as

✓
h1

h2

◆
= R↵

✓
�H

�S

◆
⌘

✓
cos↵ sin↵

� sin↵ cos↵

◆✓
�H

�S

◆
. (2.8)

The diagonalisation of the mass matrix yields the mass values mh1
and mh2

of the two scalar
mass eigenstates. The mass of the VDM particle will be denoted as m�. The parameters of the
potential Eq. (2.3) can then be expressed in terms of the physical parameters

mh1
,mh2

,m� ,↵ , v , g� , T�H
, T�S

, (2.9)
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Figure 6: Generic diagrams of the box topology contributing to the SI cross section. The symbol S denotes
scalars, F fermions and V vector bosons. The flavour of the fermion F and the external quark q are the same as
we set the CKM matrix equal to the unit matrix.

Note that this requirement is stricter than requiring that the squared momenta are the same,
since this only implies same masses for incoming and outgoing particles. Assuming small quark
momenta allows to simplify the propagator terms arising in the box diagrams,

1

(l ± pq)2 � m2
q
=

1

l2
⌥

2pq · l

l4
+ O(p2q/l

4) , (5.76)

where l is the loop momentum of the box diagram, mq the mass of the quark and where we
used m

2
q = p

2
q is used. After appying this expansion in the box diagrams, the result has to be

projected onto the required tensor structures contributing to the operators in Eq. (4.56). The
box diagrams contribute to the operator mq q̄q and the twist-2 operator. By rewriting [13,32,33]

q̄i@µ�⌫q = O
q
µ⌫ + q̄

i@µ�⌫ � i@⌫�µ

2
q +

1

4
gµ⌫mq q̄q , (5.77)

the parts of the loop amplitude that correspond to the twist-2 and the mq q̄q operator can be
extracted. The asymmetric part in Eq. (5.77) does not contribute to the SI cross section and
therefore can be dropped. We refer to these one-loop contributions to the corresponding tree-
level Wilson coe�cients as fbox

q and g
box
q . Can you give the explicit expressions, or are they too

long?

As discussed in Refs. [12, 13] the box diagrams also induce additional contributions to the
e↵ective gluon interaction with the VDM particle that have to be taken into account in the
Wilson coe�cient fG in (4.56b). The naive approach to use the same replacement as in Eq. (4.61)
to obtain the gluon interaction induces large errors [12]. To circumvent the over-estimation of
the gluon interaction without performing the full two-loop calculation, we adopt the ansatz
proposed in [13]. For heavy quarks compared to the mediator mass, it is possible to derive an
e↵ective coupling between two Higgs bosons and the gluon fields. Using the Fock-Schwinger
gauge allows to express the gluon fields in terms of the field strength tensor G

a
µ⌫ , simplifying refaddrefadd

the extraction of the e↵ective two-loop contribution to fG. Integrating out the top-quark yields
the following e↵ective two-Higgs-two-gluon coupling [13]3

L
hhGG =

1

2
d
e↵

G hihj
↵S

12⇡
G

a
µ⌫G

aµ⌫
, (5.78)

where the e↵ective coupling d
e↵

G of Ref. [13] has to be adopted to our model. First of all we
only have scalar-type mediators, given by the Higgs bosons hi, so that the mixing angle �SM of

3The authors of Ref. [13] found that the bottom and charm quark contributions are small. This may not be
the case if the Higgs couplings to down-type quarks are enhanced. This does not apply for our model, however.

14



 The NLO EW SI cross section can be obtained using the one-loop form factor

obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.

The diagram in Fig. 7 (right) yields the following contribution to the Lagrangian

Le↵ �

⇣
d
e↵

G

⌘

ij

C
ij

4�µ�
µ
�↵S

12⇡
G

a

µ⌫G
aµ⌫

, (5.82)

where C
ij

4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by

f
top

G
=

⇣
d
e↵

G

⌘

ij

C
ij

4
�↵S

12⇡
. (5.83)

5.4 The SI One-Loop Cross Section

In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
operators in Eq. (4.57). The NLO EW SI cross section can then be obtained by using the
e↵ective one-loop form factor
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G , (5.84)

with the Wilson coe�cients at one-loop level given by

f
NLO

q = f
vertex

q + f
med

q + f
box

q (5.85a)

g
NLO

q = g
box

q (5.85b)

f
NLO

G = �
↵S

12⇡

X

q=c,b,t

⇣
f
vertex

q + f
med

q

⌘
+ f

top

G
. (5.85c)

Like at LO, the heavy quark contributions of f
vertex
q and f

med
q have to be attributed to the

e↵ective gluon interaction. With the LO form factor given by
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27
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where f
LO
q has been given in Eq. (4.63), we have for the NLO EW SI cross section at leading

order in ↵S ,

�N =
1

⇡

✓
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m� +mN

◆2 ⇥
|f

LO

N |
2 + 2Re

�
f
LO

N f
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�⇤
. (5.87)

6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
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In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
operators in Eq. (4.57). The NLO EW SI cross section can then be obtained by using the
e↵ective one-loop form factor
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In our numerical analysis we use parameter points that are compatible with current theoretical
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do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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The LO form factor is given by

And the cross section at one-loop is 

� �

q q

hi

Figure 3: Generic tree-level diagram contribution to the SI cross section. The mediator S corresponds to the two
Higgs bosons h1 and h2. The quark line q corresponds to all quarks q = u, d, s, c, b, t.

corresponding to the e↵ective leading-order VDM-gluon interaction in Eq. (4.56).

For the tree-level contribution to the SI cross section the t-channel diagrams depicted in
Fig. 3 have to be calculated for vanishing momentum transfer. The respective Wilson coe�cient
for the e↵ective operator in Eq. (4.55) is extracted by projecting onto the corresponding tensor
structure, mqqq̄. Accounting for the additional symmetry factor of the amplitude, this yields
finally the following fq factor for the quarks,
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As explained above, the heavy quarks Q = b, c, t have to be integrated out, contributing thereby
to the e↵ective gluon interaction. By using Eq. (4.61), the Wilson coe�cient for the gluon
interaction, fG, can be expressed in terms of fq for q = c, t, b,
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The twist-2 operator does not contribute to it. The obtained result is in agreement with
Ref. [35]2.

5 Dark Matter Direct Detection at One-Loop Order

As a next step, we want to include the NLO EW corrections in the calculation of the SI cross
section. For this, we evaluate the one-loop contributions to the Wilson coe�cients fq and fG in
front of the operators in Eq. (4.56). At this order, also the Wilson coe�cient gq is non-zero, as
opposed to at LO. The additional topologies contributing at NLO EW are depicted in Fig. 4.
Note that we do not include vertex corrections to the hiq̄q vertex. They are part of the nuclear generic
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matrix elements and beyond the scope of our study. For the purpose of our investigation, we
assume them to be encoded in the e↵ective coupling factors of the respective nuclear matrix
elements. In the following, we present the calculation of each topology separately.

2The authors of Ref. [35] introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM particle,
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obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.

The diagram in Fig. 7 (right) yields the following contribution to the Lagrangian
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where C
ij

4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by
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5.4 The SI One-Loop Cross Section

In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
operators in Eq. (4.57). The NLO EW SI cross section can then be obtained by using the
e↵ective one-loop form factor
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q has been given in Eq. (4.63), we have for the NLO EW SI cross section at leading
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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NLO vs. LO results for the VDM model

We start with points that at LO have passed all the 
theoretical and experimental constraints.

Biggest contribution comes from the triangle diagrams 
which are proportional to   at one-loop.g3
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The K-factor is depicted in Fig. 10, as a function of m� (left) and �
LO (right). The colour

code indicates the size of g�. The K-factor is mostly positive and the bulk of K-facture values
ranges between 1 and about 2.3. As mentioned above, the K-factor increases with g�, as can
also be inferred from the figure, in particular from Fig. 10 (right).

In this and all other plots, we excluded points with m� ⇡ mh and K-factors where |K| > 2.5.
We found that for m� ⇡ mh the interference e↵ects between the h and � contributions, that
become relevant here, largely increase the (dominant) vertex contribution f

vertex
q to the e↵ective

NLO form factor. It exceeds by far the LO form factor fLO
q . Depending on the sign of fvertex

q , the

NLO cross section, which is proportional to 2Re(fLO
q f

vertex⇤
q ), is largely increased or suppressed,

inducing for large negative NLO amplitudes negative NLO cross sections. In these regions, the
NLO results are therefore no longer reliable. Two-loop contributions might lead to a better
perturbative convergence, but are beyond the scope of this paper. We deliberately did not take
into account one-loop squared terms to remove the negative cross sections. Such an approach
would only include parts of the two-loop contributions. Whether or not they approximate the
total two-loop results well enough can only be judged after performing the complete two-loop
calculation. This is why we chose the conservative approach to exclude these points from our
analysis.

In Fig. 11, we show the K-factor as function of �LO, but with the colour code indicating
the size of sin2 2↵ (left) and m� right. There is no clear correlation between the K-factor and
sin2 2↵ or m�. These plots furthermore show, that there is no correlation between the maximum
size of �LO and m� or sin2 2↵, while the maximum �

LO values require large g� values, cf. Fig. 10
(right).
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Figure 11: K-factor as function of the LO direct detection cross section with the color code indicating the size of
sin2 2↵ (left) and m� (right).

6.1.3 Results for m� > mt

We now turn to the parameter region of our sample of valid points where the approximation
described in Subsection 5.3 is a priori not valid. We cannot judge the goodness of the approxi-
mation in this parameter region without doing the full two-loop calculation which is beyond the
scope of this paper. We can check, however, if we see some unusual behaviour compared to the
results for parameter sets with m� < mt, where the approximation can be applied.
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Figure 3: Generic tree-level diagram contribution to the SI cross section. The mediator S corresponds to the two
Higgs bosons h1 and h2. The quark line q corresponds to all quarks q = u, d, s, c, b, t.

corresponding to the e↵ective leading-order VDM-gluon interaction in Eq. (4.56).

For the tree-level contribution to the SI cross section the t-channel diagrams depicted in
Fig. 3 have to be calculated for vanishing momentum transfer. The respective Wilson coe�cient
for the e↵ective operator in Eq. (4.55) is extracted by projecting onto the corresponding tensor
structure, mqqq̄. Accounting for the additional symmetry factor of the amplitude, this yields
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As explained above, the heavy quarks Q = b, c, t have to be integrated out, contributing thereby
to the e↵ective gluon interaction. By using Eq. (4.61), the Wilson coe�cient for the gluon
interaction, fG, can be expressed in terms of fq for q = c, t, b,
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The twist-2 operator does not contribute to it. The obtained result is in agreement with
Ref. [35]2.

5 Dark Matter Direct Detection at One-Loop Order

As a next step, we want to include the NLO EW corrections in the calculation of the SI cross
section. For this, we evaluate the one-loop contributions to the Wilson coe�cients fq and fG in
front of the operators in Eq. (4.56). At this order, also the Wilson coe�cient gq is non-zero, as
opposed to at LO. The additional topologies contributing at NLO EW are depicted in Fig. 4.
Note that we do not include vertex corrections to the hiq̄q vertex. They are part of the nuclear generic

box
topolo-
gies!

generic
box
topolo-
gies!

find a ref,
or solid
argument

find a ref,
or solid
argument

matrix elements and beyond the scope of our study. For the purpose of our investigation, we
assume them to be encoded in the e↵ective coupling factors of the respective nuclear matrix
elements. In the following, we present the calculation of each topology separately.

2The authors of Ref. [35] introduced an e↵ective coupling fN ⇡ 0.3 between the nucleon and the DM particle,
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Figure 9: Spin-independent direct detection LO cross section (left) and NLO cross section (right) versus the mass
m� for the parameter sample passing all constraints and m� < mt. The color code denotes the size of the dark
gauge coupling g�.

to the LO contribution that is proportional to g
2
�. In total the K-factor, i.e. the ratio between

NLO and LO cross section, therefore increases with g�.

Being proportional to f
LO
q the NLO corrected cross section also drops for m� = mh, so that

the sensitivity of the direct detection experiment is not increased after inclusion of the NLO
corrections; the blind spots remain also at NLO. In our scan we furthermore did not find any
parameter points where a specific parameter combination leads to an accidental suppression at
LO that is removed at NLO. There is a further blind spot when ↵ = 0. However, in this case
the SM-like Higgs boson has exactly SM-like couplings and the new scalar decouples from all
SM particles except for the coupling with the SM-like Higgs boson. In this scenario the SM-like
Higgs decouples from the vector dark matter particle, and, depending on the mass of the second
scalar and its coupling strength with the SM-like Higgs boson, we may end up with two dark
matter candidates with the second scalar being metastable. The study of such a scenario is
beyond the scope of this paper and we do not consider this case further here.
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Figure 10: K-factor versus the Higgs mass m� (left) and �LO (right) for the parameter sample passing all
constraints and m� < mt. The color code denotes the size of the dark gauge coupling g�.
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The blind spots at LO and at NLO are the same.  

In our scan we did not find any other points where a specific parameter combination would lead to an 
accidental suppression at LO that is removed at NLO.  

There is a further blind spot when α = 0. In this case the SM-like Higgs boson has exactly SM-like 
couplings and the new scalar only couples to the Higgs and to dark matter. The SM-like Higgs decouples 
from dark matter and we may end up with two dark matter candidates with the second scalar being 
metastable. 

NLO vs. LO results for the VDM model



Left: points that are not excluded at LO but are excluded at NLO. 

Right: points that are far way from exclusion but are pushed closed to the bound at NLO.
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Figure 15: The SI cross section including the correction factor f�� at LO (biue) and NLO (orange) compared to
the Xenon limit (blue-dashed) versus the DM mass m�. The definition of the parameter sample included in the
left and right plots is described in the text.

sample where
|�Xe(m�) � �

LO
|

�LO
> 1 (6.97)

and
|�Xe(m�) � �

NLO
|

�NLO
< 1 . (6.98)

This implies we only consider parameter points where the LO cross section is much smaller than
the Xenon limit, but the NLO cross section is of the order of the Xenon limit. We learn from
this figure that although LO results might suggest that the Xenon experiment is not sensitive to
the model, this statement does not hold any more when NLO corrections are taken into account.
These results confirm the importance of the NLO corrections when interpreting the data.

7 Conclusions

In this paper, we investigated a minimal model with a VDM particle. We computed the NLO
corrections to the direct detection cross section for the scattering of the VDM particle o↵ a
nucleon. We developed the renormalisation of the model, proposing several renormalisation
schemes for the mixing angle ↵ of the two physical scalars of the model. We computed the leading
corrections, including relevant two-loop box contributions to the e↵ective gluon interaction in
the heavy quark approximation. With the box contributions to the NLO cross section being
two orders of magnitude below the leading vertex corrections, we estimated the error induced
by the approximation to be small. Interference e↵ects of the two scalar particles that become
important for degenerate mass values on the other hand, were found to be large and require
further investigations beyond the scope of this paper, namely the computation of the complete
two-loop contributions. Outside this region, the perturbative series is well-behaved and K-
factors of up to about 2.5 were found.

We further investigated the impact of the chosen renormalisation scheme for ↵. While
the process-dependent renormalisation of ↵ is manifestly gauge-parameter independent, it was
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To understand the changes relative to exclusion in parameter space we have chosen two set 
of points.
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However, when performing a scan there is no 
noticeable change in the allowed parameter space 
of the VDM model.
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left and right plots is described in the text.
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The End



Nuclear form factors

found to lead to unphysically large corrections. This did not improve by choosing the gauge-
parameter dependent MS scheme. A renormalisation scheme exploiting the OS conditions of
the scalar fields on the other hand, leads to moderate K-factors, while being manifestly gauge-
parameter dependent. For the proper interpretation of the data, therefore, the choice of the
gauge parameter has to be specified here.

We found that the NLO corrections can either enhance or suppress the cross section. With
K-factors of up to about 2.5, they are important for the correct interpretation of the viability
of the VDM model based on the experimental limits on the direct detection cross section. The
NLO corrections can increase the LO results to values where the Xenon experiment becomes
sensitive to the model, or to values where the model is even excluded due to cross sections above
the Xenon limit. In case of suppression, parameter points that might be rejected at LO may
render the model viable when NLO corrections are included.

The next steps would be to investigate in greater detail the interesting region of degenerate
scalar masses and study its implication on phenomenology in order to further be able to delineate
the viability of this simple SM extension in providing a VDM candidate.
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A Nuclear Form Factors

We here present the numerical values for the nuclear form factors defined in Eq. (4.59). The
values of the form factors for light quarks are taken from micrOmegas [75]
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which can be related to the gluon form factors as
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The needed second momenta in Eq. (4.59) are defined at the scale µ = mZ by using the CTEQ

parton distribution functions [76],

u
p(2) = 0.22 , ū

p(2) = 0.034 , (A.101a)

d
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p(2) = 0.036 , (A.101b)

s
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c
p(2) = 0.019 , c̄

p(2) = 0.019 , (A.101d)

b
p(2) = 0.012 , b̄

p(2) = 0.012 , (A.101e)

where the respective second momenta for the neutron can be obtained by interchanging up- and
down-quark values.
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Box corrections
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Figure 6: Generic diagrams of the box topology contributing to the SI cross section. The symbol S denotes
scalars, F fermions and V vector bosons. The flavour of the fermion F and the external quark q are the same as
we set the CKM matrix equal to the unit matrix.

Note that this requirement is stricter than requiring that the squared momenta are the same,
since this only implies same masses for incoming and outgoing particles. Assuming small quark
momenta allows to simplify the propagator terms arising in the box diagrams,

1

(l ± pq)2 � m2
q
=
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l2
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2pq · l

l4
+ O(p2q/l

4) , (5.76)

where l is the loop momentum of the box diagram, mq the mass of the quark and where we
used m

2
q = p

2
q is used. After appying this expansion in the box diagrams, the result has to be

projected onto the required tensor structures contributing to the operators in Eq. (4.56). The
box diagrams contribute to the operator mq q̄q and the twist-2 operator. By rewriting [13,32,33]

q̄i@µ�⌫q = O
q
µ⌫ + q̄
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2
q +

1

4
gµ⌫mq q̄q , (5.77)

the parts of the loop amplitude that correspond to the twist-2 and the mq q̄q operator can be
extracted. The asymmetric part in Eq. (5.77) does not contribute to the SI cross section and
therefore can be dropped. We refer to these one-loop contributions to the corresponding tree-
level Wilson coe�cients as fbox

q and g
box
q . Can you give the explicit expressions, or are they too

long?

As discussed in Refs. [12, 13] the box diagrams also induce additional contributions to the
e↵ective gluon interaction with the VDM particle that have to be taken into account in the
Wilson coe�cient fG in (4.56b). The naive approach to use the same replacement as in Eq. (4.61)
to obtain the gluon interaction induces large errors [12]. To circumvent the over-estimation of
the gluon interaction without performing the full two-loop calculation, we adopt the ansatz
proposed in [13]. For heavy quarks compared to the mediator mass, it is possible to derive an
e↵ective coupling between two Higgs bosons and the gluon fields. Using the Fock-Schwinger
gauge allows to express the gluon fields in terms of the field strength tensor G

a
µ⌫ , simplifying refaddrefadd

the extraction of the e↵ective two-loop contribution to fG. Integrating out the top-quark yields
the following e↵ective two-Higgs-two-gluon coupling [13]3

L
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2
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12⇡
G

a
µ⌫G

aµ⌫
, (5.78)

where the e↵ective coupling d
e↵

G of Ref. [13] has to be adopted to our model. First of all we
only have scalar-type mediators, given by the Higgs bosons hi, so that the mixing angle �SM of

3The authors of Ref. [13] found that the bottom and charm quark contributions are small. This may not be
the case if the Higgs couplings to down-type quarks are enhanced. This does not apply for our model, however.
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Figure 7: The full two-loop gluon interaction with the DM candidate (left) and the e↵ective two-loop interaction
after integration out the heavy quarks (right).
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Eq. (4.62) to obtain the gluon interaction induces large errors [12]. To circumvent the over-
estimation of the gluon interaction without performing the full two-loop calculation, we adopt
the ansatz proposed in Ref. [13]. For heavy quarks compared to the mediator mass, it is possible
to derive an e↵ective coupling between two Higgs bosons and the gluon fields. Using the Fock-
Schwinger gauge allows us to express the gluon fields in terms of the field strength tensor Ga
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, (5.79)

where the e↵ective coupling d
e↵

G
of Ref. [13] has to be adopted to our model. First of all we

only have scalar-type mediators, given by the Higgs bosons hi, so that the mixing angle �SM of
Ref. [13] which quantifies the CP-odd admixture, is set to

�SM = 0 . (5.80)

Second, the coupling of the Higgs bosons hi to the top quark di↵ers depending on which Higgs
boson is coupled, so that the e↵ective coupling in Eq. (5.79) becomes

d
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⇣
d
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⌘
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= (R↵)i1(R↵)j1
1

v2
, (5.81)

with the rotation matrix R↵ defined in Eq. (2.8). The e↵ective coupling allows for the calculation
of the box-type diagram in Fig. 7 (right).

In Ref. [13], the full two-loop calculation was performed. The comparison with the complete
two-loop result showed very good agreement between the approximate and the exact result for
mediator masses below mt. Our model is structurally not di↵erent in the sense that the mediator
coupling to the DM particle (a fermion in Ref. [13]) is also a scalar particle so that the results

4The authors of Ref. [13] found that the bottom and charm quark contributions are small. This may not be
the case if the Higgs couplings to down-type quarks are enhanced. This does not apply for our model, however.
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with the rotation matrix R↵ defined in Eq. (2.8). The e↵ective coupling allows for the calculation
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In Ref. [13], the full two-loop calculation was performed. The comparison with the complete
two-loop result showed very good agreement between the approximate and the exact result for
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obtained in Ref. [13] should be applicable to our model as well. Moreover, the box contribution
to the NLO SI direct detection cross section is only minor as we verified explicitly.

The diagram in Fig. 7 (right) yields the following contribution to the Lagrangian
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, (5.82)

where C
ij

4 denotes the contribution from the triangle loop built up by hi, hj and the VDM
particle. It has to be extracted from the calculated amplitude of Fig. 7 (right). Using Eq. (4.57b)
the contributions by the box topology to the gluon-DM interaction are given by
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5.4 The SI One-Loop Cross Section

In the last sections we discussed the extraction of the one-loop e↵ective form factors for the
operators in Eq. (4.57). The NLO EW SI cross section can then be obtained by using the
e↵ective one-loop form factor
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with the Wilson coe�cients at one-loop level given by
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Like at LO, the heavy quark contributions of f
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q and f
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q have to be attributed to the

e↵ective gluon interaction. With the LO form factor given by
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where f
LO
q has been given in Eq. (4.63), we have for the NLO EW SI cross section at leading

order in ↵S ,
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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6 Numerical Analysis

In our numerical analysis we use parameter points that are compatible with current theoretical
and experimental constraints. These are obtained by performing a scan in the parameter space
of the model and by checking each data set for compatibility with the constraints. In order to
do so, the VDM model was implemented in the code ScannerS [53, 54] which automatises the
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We end up with the effective Lagrangian

where   is the contribution from the triangle (right). Finally the corresponding Wilson coefficient isCij
Δ

Abe, Fujiwara, Hisano, JHEP 02, 028 (2019)

Ertas, Kahlhoefer, JHEP06 052 (2019)
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Dark matter nucleon scattering at tree-level

At the fundamental level, the DM-
nucleon scattering can be understood 
as the scattering of the DM particle 
A with light quarks, q = u, d, s, and 
gluons.  

Light quark Yukawa couplings are 
extremely small, the diagrams (a) and 
(b) with multiple insertions of light 
quark Yukawa couplings, are expected 
to be negligibly small.

The DM nuclear recoils can also be induced by the DM-gluon scattering, for which the next-leading-order 
contribution emerges at the two-loop level. Diagram (c) has two internal Higgs lines attached to the top 
loop and could be relevant. Based on other computations we have to believe that this is just an overall 
normalisation factor.

In the one-loop calculation we will still work at the nucleon level, combining the Higgs-quark and Higgs-
gluon couplings to a nucleon into a single Higgs-nucleon-nucleon form factor fN mN /vH , as we did for 
the tree-level diagrams.
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because the model has 6 independent parameters, we need 6 counterterms to cancel the UV 
divergences at the one-loop order.

The original parameters can be written in terms of 
tadpoles, and mass insertions (including mixing). The 
sum of all diagrams is zero.  

This also means we do not need a renormalisation 
prescription because the sum of all diagrams in the 
amplitude without counterterms has to be finite.

The counterterm contribution

The counterterm potential is
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Figure 3. Counterterm-insertion diagrams.

Lagrangian parameters in eq. (2.1) with the following counterterms

Vc = −δµ2
H |H|2 − δµ2

S |S|2 + δλH |H|4 + δλS |S|4 + δκ|H|2|S|2 +
(
δµ2S2 +H.c.

)
, (4.3)

which takes the same form as the original potential with the subscript c labelling coun-

terterms. Here we have assumed that the parameters in eq. (2.1) correspond to the renor-

malised quantities. Furthermore, as we shall see below, we do not need the field wave

function renormalisation counterterms since their contributions either vanish in the limit

of zero momentum transfer or are cancelled in the computations.1 The other way is to

define them in terms of the physical mass eigenstates h1, 2 and A, by writing the following

potential terms up to quadratic ones
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These two sets of counterterms can be related to each other by expanding eq. (4.3) in terms

of the mass eigenstates, eq. (2.6), up to quadratic order in fields. The original set can be

written in terms of the new set of parameters as

δµ2
H =

1

2
(c2αδm

2
1 + s2αδm

2
2 − 2sαcαδm

2
12)

+
vS
2vH

[sαcα(δm
2
1 − δm2

2) + (c2α − s2α)δm
2
12]−

3

2vH
(δt1cα − δt2sα) ,

δµ2
S =

1

2
(s2αδm

2
1 + c2αδm

2
2 + 2sαcαδm

2
12 − δm2

A)

+
vH
2vS

[sαcα(δm
2
1 − δm2

2) + (c2α − s2α)δm
2
12]−

1

vS
(δt1sα + δt2cα) ,

δµ2 =
1

4vS
(δt1sα + δt2cα)−

1

4
δm2

A ,

δκ =
1

vHvS
[sαcα(δm

2
1 − δm2

2) + (c2α − s2α)δm
2
12] ,

δλH =
1

2v2H
(c2αδm

2
1 + s2αδm

2
2 − 2sαcαδm

2
12)−

1

2v3H
(δt1cα − δt2sα) ,

δλS =
1

2v2S
(s2αδm

2
1 + c2αδm

2
2 + 2sαcαδm

2
12)−

1

2v3S
(δt1sα + δt2cα) . (4.5)

Now we proceed to compute the total contribution from the counterterm insertion

diagrams shown in figure 3. Note that the diagrams with external A-line corrections imply

1In fact, we could have opted to work with unrenormalised fields [23] which gives rise to Green functions

that are in general divergent but leads to finite S-matrix elements.
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the following contributions to F

Fce = −2

(
δAp

2 − δm2
A +

2VAA1δt1
m2

1

+
2VAA2δt2

m2
2

)
1

p2 −m2
A

F0 = 0 , (4.6)

where the subscript e represents the external DM lines. Here δA is the DM A wave function

counterterm and p2 is its momentum, and

F0 =
VAA1cα
m2

1

− VAA2sα
m2

2

(4.7)

is the tree-level counterpart of F which appears in the first equality of eq. (3.1) in the

limit of zero momentum transfer. Note that F0 = 0 if we apply the tree-level relations in

eq. (2.7), which leads to the vanishing Fce. For the remaining diagrams in in figure 3, we

can calculate their contributions to the effective vertices AAh1 and AAh2 directly as

−iV (1)
AA1 c(i+v) = iVAA1

δm2
1

m2
1

+ iVAA2
δm2

12

m2
2

−6iVAA1V111δt1
m4

1

− 2iVAA1V112δt2
m2

1m
2
2

− 2iVAA2V112δt1
m2

1m
2
2

− 2iVAA2V122δt2
m4

2

+
2iVAA11δt1

m2
1

+
iVAA12δt2

m2
2

− i

(
sαvSδλS +

1

2
cαvHδκ

)
,

−iV (1)
AA2 c(i+v) = iVAA1

δm2
12

m2
1

+ iVAA2
δm2

2

m2
2

−2iVAA1V112δt1
m4

1

− 2iVAA1V122δt2
m2

1m
2
2

− 2iVAA2V122δt1
m2

1m
2
2

− 6iVAA2V222δt2
m4

2

+
iVAA12δt1

m2
1

+
2iVAA22δt2

m2
2

− i

(
cαvSδλS − 1

2
sαvHδκ

)
, (4.8)

where the subscripts i and v denote the corrections to internal h1,2 propagators and h1,2A2

vertices, respectively. We also set the four-momenta of the internal h1,2 lines to be zero

since the momentum transfer vanishes by assumption. In each equation in eq. (4.8), the

first two lines correspond to the internal h1,2 propagator corrections, while the third line to

the vertices AAh1 and AAh2 corrections. With these two expressions, we can show their

contributions to F vanishes

Fc(i+v) =
V (1)
AA1 cbcα
m2

1

−
V (1)
AA2 cbsα
m2

2

= 0 , (4.9)

where we have used the relations in eq. (4.5) to represent the dimensionless coupling coun-

terterms δκ, δλS , and δλH in terms of the ones defined with physical mass eigenstates.

We have also employed the definitions of the tree-level vertices eq. (A.1) and the relations

in eq. (2.7).

4.2 Cancellation of SM particle loops

In this subsection, we will show that the one-loop contributions from the SM particle loops

other than the Higgs cancels. For illustration purposes we will adopt the top-quark loops

in figure 4 to show the main features of this cancellation. Note that the remaining SM
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is the tree-level counterpart of F which appears in the first equality of eq. (3.1) in the

limit of zero momentum transfer. Note that F0 = 0 if we apply the tree-level relations in

eq. (2.7), which leads to the vanishing Fce. For the remaining diagrams in in figure 3, we

can calculate their contributions to the effective vertices AAh1 and AAh2 directly as
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where the subscripts i and v denote the corrections to internal h1,2 propagators and h1,2A2

vertices, respectively. We also set the four-momenta of the internal h1,2 lines to be zero

since the momentum transfer vanishes by assumption. In each equation in eq. (4.8), the

first two lines correspond to the internal h1,2 propagator corrections, while the third line to

the vertices AAh1 and AAh2 corrections. With these two expressions, we can show their

contributions to F vanishes

Fc(i+v) =
V (1)
AA1 cbcα
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1

−
V (1)
AA2 cbsα
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2

= 0 , (4.9)

where we have used the relations in eq. (4.5) to represent the dimensionless coupling coun-

terterms δκ, δλS , and δλH in terms of the ones defined with physical mass eigenstates.

We have also employed the definitions of the tree-level vertices eq. (A.1) and the relations

in eq. (2.7).

4.2 Cancellation of SM particle loops

In this subsection, we will show that the one-loop contributions from the SM particle loops

other than the Higgs cancels. For illustration purposes we will adopt the top-quark loops

in figure 4 to show the main features of this cancellation. Note that the remaining SM
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where the subscript e represents the external DM lines. Here δA is the DM A wave function

counterterm and p2 is its momentum, and

F0 =
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(4.7)

is the tree-level counterpart of F which appears in the first equality of eq. (3.1) in the

limit of zero momentum transfer. Note that F0 = 0 if we apply the tree-level relations in

eq. (2.7), which leads to the vanishing Fce. For the remaining diagrams in in figure 3, we

can calculate their contributions to the effective vertices AAh1 and AAh2 directly as
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where the subscripts i and v denote the corrections to internal h1,2 propagators and h1,2A2

vertices, respectively. We also set the four-momenta of the internal h1,2 lines to be zero

since the momentum transfer vanishes by assumption. In each equation in eq. (4.8), the

first two lines correspond to the internal h1,2 propagator corrections, while the third line to

the vertices AAh1 and AAh2 corrections. With these two expressions, we can show their

contributions to F vanishes

Fc(i+v) =
V (1)
AA1 cbcα
m2

1

−
V (1)
AA2 cbsα
m2

2

= 0 , (4.9)

where we have used the relations in eq. (4.5) to represent the dimensionless coupling coun-

terterms δκ, δλS , and δλH in terms of the ones defined with physical mass eigenstates.

We have also employed the definitions of the tree-level vertices eq. (A.1) and the relations

in eq. (2.7).

4.2 Cancellation of SM particle loops

In this subsection, we will show that the one-loop contributions from the SM particle loops

other than the Higgs cancels. For illustration purposes we will adopt the top-quark loops

in figure 4 to show the main features of this cancellation. Note that the remaining SM
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Figure 4. Top quark loop diagrams for DM-nucleon scatterings.

particles, quarks, leptons, and electroweak gauge bosons, couple to the Higgs bosons h1,2
only through the rotation of the doublet neutral components h with the couplings given by

gη1 = gηcα , gη2 = −gηsα , (4.10)

where gη represents the SM particle species η coupling to the original SM Higgs h. For the

top quark, its couplings to h1,2 are yt1 = ytcα and yt2 = −ytsα, respectively. Moreover, it

can be seen from figure 4 that the SM loops can appear in corrections via the Higgs bosons

tadpoles, either connected to the dark matter particle A or to another Higgs line, or via

two-point functions, which are corrections to the Higgs propagators or finally as corrections

to vertices. For these three contributions, the top-quark-loop AAh1 and AAh2 corrections

are given by

−iV (1)
AA1 e = − 2VAA1

p2 −m2
A

(
VAA1cα
m2

1

+
VAA2sα
m2

s

)
L1 ,

−iV (1)
AA2 e = − 2VAA2

p2 −m2
A

(
VAA1cα
m2

1

+
VAA2sα
m2

s

)
L1 ,

−iV (1)
AA1 i = −

(
VAA1c2α
m2

1

− VAA2cαsα
m2

2

)
L2

+

(
6VAA1V111cα

m4
1

− 2VAA1V112sα
m2

1m
2
2

+
2VAA2V112cα

m2
1m

2
2

− 2VAA2V122sα
m4

2

)
L1 ,

−iV (1)
AA2 i = −

(
−VAA1sαcα

m2
1

+
VAA2s2α
m2

2

)
L2

+

(
2VAA1V112cα

m4
1

− 2VAA1V122sα
m2

1m
2
2

+
2VAA2V122cα

m2
1m

2
2

− 6VAA2V222sα
m4

2

)
L1 ,

−iV (1)
AA1 v = −

(
2VAA11cα

m2
1

− VAA12sα
m2

2

)
L1, ,

−iV (1)
AA2 v = −

(
VAA12cα

m2
1

− 2VAA22sα
m2

2

)
L1, , (4.11)

where, for top quarks, the tadpole and bubble one-loop integrals can be represented

as follows

L1 = (−1)(−iyt)

∫
d4l

(2π)4
Tr

[
i

/l −mt

]
,

L2 = (−1)(−iyt)
2
∫

d4l

(2π)4
Tr

[
i2

(/l −mt)2

]
, (4.12)
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where Tr denotes the trace over the spinor space. With V (1)
AA1(AA2) e, it is easy to write

down the following contribution to F from the external A correction

Fe = (−i)
2L1

p2 −m2
A

(
VAA1cα
m2

1

+
VAA2sα
m2

2

)
F0 = 0 , (4.13)

in which the second equality follows the identity F0 = 0. For the remaining diagrams,

we can apply the definitions of the tree-level couplings in appendix A and the tree-level

relations in eq. (2.7) to directly prove

Fi+v =
(V (1)

AA1 i + V (1)
AA1 v)cα

m2
1

−
(V (1)

AA2 i + V (1)
AA2 v)sα

m2
2

= 0 . (4.14)

In the above derivation, what is crucial for the cancellation is the dependence of top-

quark Yukawa couplings on the mixing angle α. Since for a given Higgs boson hi the mixing

matrix enters the same way for all SM fermions and electroweak gauge bosons, therefore

the cancellation is present for all SM particles (except h1,2) in the loops as well.

4.3 One-loop level DM-nucleon scatterings

Having proved the cancellation of all diagrams involving the counterterms and the SM

particle loops, we now focus on loop diagrams generated by the Higgs bosons h1,2 and the

scalar DM particle A. As shown below, we can divide these one-loop diagrams into three

classes: the corrections to the external DM lines A, to the vertices VAA1,AA2, and to the

internal Higgs propagators. Note that all expression will be written as a function of the

triple- and quartic-scalar terms in the scalar potential eq. (2.1) listed in appendix A. It is

useful to first define the following one-particle irreducible (1PI) one-loop diagrams.

• The h1,2 and A tadpole corrections:

−i∆t1 =

∫
d4l

(2π)4

(
3V111

l2 −m2
1

+
V122

l2 −m2
2

+
VAA1

l2 −m2
A

)
,

−i∆t2 =

∫
d4l

(2π)4

(
V112

l2 −m2
1

+
3V222

l2 −m2
2

+
VAA2

l2 −m2
A

)
, (4.15)

• The h1,2 and A mass squared corrections:

−i∆m2
1 =

∫
d4l

(2π)4

[
18V 2

111

(l2 −m2
1)

2
+

4V 2
112

(l2 −m2
1)(l

2 −m2
2)

+
2V 2

122

(l2 −m2
2)

2
+

2V 2
AA1

(l2 −m2
A)

2

]

+

[
12V1111

l2 −m2
1

+
2V1122

l2 −m2
2

+
2VAA11

l2 −m2
A

]
,

−i∆m2
2 =

∫
d4l

(2π)4

[
2V 2

112

(l2 −m2
1)

2
+

4V 2
122

(l2 −m2
1)(l

2 −m2
2)

+
18V 2

222

(l2 −m2
2)

2
+

2V 2
AA2

(l2 −m2
A)

2

]

+

[
2V1122

l2 −m2
1

+
12V2222

l2 −m2
2

+
2VAA22

l2 −m2
A

]
,

−i∆m2
12 =

∫
d4l

(2π)4

[
6V111V112

(l2 −m2
1)

2
+

4V112V122

(l2 −m2
1)(l

2 −m2
2)

+
6V122V222

(l2 −m2
2)

2
+

2VAA1VAA2

(l2 −m2
A)

2

]
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where Tr denotes the trace over the spinor space. With V (1)
AA1(AA2) e, it is easy to write

down the following contribution to F from the external A correction

Fe = (−i)
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(
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+
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2

)
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in which the second equality follows the identity F0 = 0. For the remaining diagrams,

we can apply the definitions of the tree-level couplings in appendix A and the tree-level

relations in eq. (2.7) to directly prove
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In the above derivation, what is crucial for the cancellation is the dependence of top-

quark Yukawa couplings on the mixing angle α. Since for a given Higgs boson hi the mixing

matrix enters the same way for all SM fermions and electroweak gauge bosons, therefore

the cancellation is present for all SM particles (except h1,2) in the loops as well.
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Figure 4. Top-quark-loop diagrams for DM-nucleon scatterings.

particles, quarks, leptons, and electroweak gauge bosons, couple to the Higgs bosons h1,2
only through the rotation of the doublet neutral components h with the couplings given by

gη1 = gηcα , gη2 = −gηsα , (4.10)

where gη represents the SM particle species η coupling to the original SM Higgs h. For the

top quark, its couplings to h1,2 are yt1 = ytcα and yt2 = −ytsα, respectively. Moreover, it

can be seen from figure 4 that the SM loops can appear in corrections via the Higgs bosons

tadpoles, either connected to the dark matter particle A or to another Higgs line, or via

two-point functions, which are corrections to the Higgs propagators or finally as corrections

to vertices. For these three contributions, the top-quark-loop AAh1 and AAh2 corrections

are given by

−iV (1)
AA1 e = − 2VAA1

p2 −m2
A

(
VAA1cα
m2

1

+
VAA2sα
m2

s

)
L1 ,

−iV (1)
AA2 e = − 2VAA2

p2 −m2
A

(
VAA1cα
m2

1

+
VAA2sα
m2

s

)
L1 ,

−iV (1)
AA1 i = −

(
VAA1c2α
m2

1

− VAA2cαsα
m2

2
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L2

+

(
6VAA1V111cα

m4
1

− 2VAA1V112sα
m2

1m
2
2

+
2VAA2V112cα

m2
1m

2
2

− 2VAA2V122sα
m4

2

)
L1 ,

−iV (1)
AA2 i = −

(
−VAA1sαcα

m2
1

+
VAA2s2α
m2

2
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+

(
2VAA1V112cα

m4
1

− 2VAA1V122sα
m2

1m
2
2

+
2VAA2V122cα

m2
1m
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− 6VAA2V222sα
m4
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L1 ,

−iV (1)
AA1 v = −
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2VAA11cα
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1

− VAA12sα
m2
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L1, ,

−iV (1)
AA2 v = −
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VAA12cα
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1

− 2VAA22sα
m2

2

)
L1, , (4.11)

where, for top quarks, the tadpole and bubble one-loop integrals can be represented

as follows

L1 = (−1)(−iyt)

∫
d4l

(2π)4
Tr

[
i

/l −mt

]
,

L2 = (−1)(−iyt)
2
∫

d4l

(2π)4
Tr

[
i2

(/l −mt)2

]
, (4.12)
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where gη represents the SM particle species η coupling to the original SM Higgs h. For the

top quark, its couplings to h1,2 are yt1 = ytcα and yt2 = −ytsα, respectively. Moreover, it

can be seen from figure 4 that the SM loops can appear in corrections via the Higgs bosons

tadpoles, either connected to the dark matter particle A or to another Higgs line, or via

two-point functions, which are corrections to the Higgs propagators or finally as corrections
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the following contributions to F

Fce = −2

(
δAp

2 − δm2
A +

2VAA1δt1
m2

1

+
2VAA2δt2

m2
2

)
1

p2 −m2
A

F0 = 0 , (4.6)

where the subscript e represents the external DM lines. Here δA is the DM A wave function

counterterm and p2 is its momentum, and

F0 =
VAA1cα
m2

1

− VAA2sα
m2

2

(4.7)

is the tree-level counterpart of F which appears in the first equality of eq. (3.1) in the

limit of zero momentum transfer. Note that F0 = 0 if we apply the tree-level relations in

eq. (2.7), which leads to the vanishing Fce. For the remaining diagrams in in figure 3, we

can calculate their contributions to the effective vertices AAh1 and AAh2 directly as

−iV (1)
AA1 c(i+v) = iVAA1

δm2
1

m2
1

+ iVAA2
δm2

12

m2
2

−6iVAA1V111δt1
m4

1

− 2iVAA1V112δt2
m2

1m
2
2

− 2iVAA2V112δt1
m2

1m
2
2

− 2iVAA2V122δt2
m4

2

+
2iVAA11δt1

m2
1

+
iVAA12δt2

m2
2

− i

(
sαvSδλS +

1

2
cαvHδκ

)
,

−iV (1)
AA2 c(i+v) = iVAA1

δm2
12

m2
1

+ iVAA2
δm2

2

m2
2

−2iVAA1V112δt1
m4

1

− 2iVAA1V122δt2
m2

1m
2
2

− 2iVAA2V122δt1
m2

1m
2
2

− 6iVAA2V222δt2
m4

2

+
iVAA12δt1

m2
1

+
2iVAA22δt2

m2
2

− i

(
cαvSδλS − 1

2
sαvHδκ

)
, (4.8)

where the subscripts i and v denote the corrections to internal h1,2 propagators and h1,2A2

vertices, respectively. We also set the four-momenta of the internal h1,2 lines to be zero

since the momentum transfer vanishes by assumption. In each equation in eq. (4.8), the

first two lines correspond to the internal h1,2 propagator corrections, while the third line to

the vertices AAh1 and AAh2 corrections. With these two expressions, we can show their

contributions to F vanishes

Fc(i+v) =
V (1)
AA1 cbcα
m2

1

−
V (1)
AA2 cbsα
m2

2

= 0 , (4.9)

where we have used the relations in eq. (4.5) to represent the dimensionless coupling coun-

terterms δκ, δλS , and δλH in terms of the ones defined with physical mass eigenstates.

We have also employed the definitions of the tree-level vertices eq. (A.1) and the relations

in eq. (2.7).

4.2 Cancellation of SM particle loops

In this subsection, we will show that the one-loop contributions from the SM particle loops

other than the Higgs cancels. For illustration purposes we will adopt the top-quark loops

in figure 4 to show the main features of this cancellation. Note that the remaining SM
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+

[
3V1112

l2 −m2
1

+
3V1222

l2 −m2
2

+
VAA12

l2 −m2
A

]
,

−i∆m2
A =

∫
d4l

(2π)4

[
4V 2

AA1

[(l + p)2 −m2
A](l

2 −m2
1)

+
4V 2

AA2

[(l + p)2 −m2
A](l

2 −m2
2)

]

+

[
2VAA11

l2 −m2
1

+
2VAA22

l2 −m2
2

+
12VAAAA

l2 −m2
A

]
, (4.16)

• The 1PI vertex corrections:

−i∆VAA1 =

∫
d4l

(2π)4

[
6V111VAA11

(l2 −m2
1)

2
+

2V112VAA12

(l2 −m2
1)(l

2 −m2
2)

+
2V122VAA22

(l2 −m2
2)

2
+

12VAA1VAAAA

(l2 −m2
A)

2

]

+2×
[

4VAA1VAA11

[(l + p)2 −m2
A](l

2 −m2
1)

+
2VAA2VAA12

[(l + p)2 −m2
A](l

2 −m2
2)

]

+

[
12V111V 2

AA1

[(l + p)2 −m2
A](l

2 −m2
1)

2
+

2× 4V112VAA1VAA2

[(l + p)2 −m2
A](l

2 −m2
1)(l

2 −m2
2)

+
4V122V 2

AA2

[(l + p)2 −m2
A](l

2 −m2
2)

2

]

+

[
4V 3

AA1

[(l + p)2 −m2
A]

2(l2 −m2
1)

+
4VAA1V 2

AA2

[(l + p)2 −m2
A]

2(l2 −m2
2)

]
,

−i∆VAA2 =

∫
d4l

(2π)4

[
2V112VAA11

(l2 −m2
1)

2
+

2V122VAA12

(l2 −m2
1)(l

2 −m2
2)

+
6V222VAA22

(l2 −m2
2)

2
+

12VAA2VAAAA

(l2 −m2
A)

2

]

+2×
[

2VAA1VAA12

[(l + p)2 −m2
A](l

2 −m2
1)

+
4VAA2VAA22

[(l + p)2 −m2
A](l

2 −m2
2)

]

+

[
4V112V 2

AA1

[(l + p)2 −m2
A](l

2 −m2
1)

2
+

2× 4V122VAA1VAA2

[(l + p)2 −m2
A](l

2 −m2
1)(l

2 −m2
2)

+
12V222V 2

AA2

[(l + p)2 −m2
A](l

2 −m2
2)

2

]

+

[
4V 2

AA1VAA2

[(l + p)2 −m2
A]

2(l2 −m2
1)

+
4V 3

AA2

[(l + p)2 −m2
A]

2(l2 −m2
2)

]
, (4.17)

Note that we have kept the momentum p for external DM states while defining

∆VAA1 and ∆VAA2. The above 1PI irreducible diagrams are the basic ingredients for

constructing more elaborated one-loop Feynman diagrams.

First of all, it is easy to write down the contributions to F from the one-loop external

A corrections shown in figure 5

Fe =
2i

p2 −m2
A

[
−i∆m2

A +
2iVAA1∆t1

m2
1

+
2iVAA2∆t2

m2
2

]
F0 = 0 , (4.18)

where we have kept the same external A momentum, p, which implies that the limit of

zero momentum transfer was assumed.
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Thus, the total one-loop contributions to the factor F is given by

F =
(V (1)

AA1 i + V (1)
AA1 v)cα

m2
1

−
(V (1)

AA2 i + V (1)
AA2 v)sα

m2
2

=
is2α(m2

1 −m2
2)

8vHv3Sm
2
1m

2
2

∫
d4l

(2π)4

[
A1(l · p)

(l2 −m2
1)(l

2 −m2
2)[(l + p)2 −m2

A]
(4.21)

+
A2(l · p)

(l2 −m2
1)

2(l2 −m2
2)[(l + p)2 −m2

A]
+

A3(l · p)
(l2 −m2

1)(l
2 −m2

2)
2[(l + p)2 −m2

A]

]

where the coefficients Ai are defined as follows

A1 ≡ 4(m2
1s

2
α +m2

2c
2
α)(2m

2
1vHs2α + 2m2

2vHc2α −m2
1vSs2α +m2

2vSs2α) ,

A2 ≡ −2m4
1sα[(m

2
1 + 5m2

2)vScα − (m2
1 −m2

2)(vSc3α + 4vHs3α)] , (4.22)

A3 ≡ 2m4
2cα[(5m

2
1 +m2

2)vSsα − (m2
1 −m2

2)(vSs3α + 4vHc3α)] .

Note that in the derivation of eq. (4.21) we have used the tree-level relations from eq. (2.7)

and the DM particle on-shell condition p2 = m2
A.

We can utilize the Passarino-Veltman C and D functions as defined in refs. [24–26] to

further reduce the expression of F to be

F = − s2α(m2
1 −m2

2)

128π2vHv3Sm
2
1m

2
2

pµ[A1Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A)

+A2Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
1,m

2
2,m

2
A)

+A3Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
2,m

2
2,m

2
A)]

= −s2α(m2
1 −m2

2)m
2
A

128π2vHv3Sm
2
1m

2
2

[A1C2(0,m
2
A,m

2
A,m

2
1,m

2
2,m

2
A)

+A2D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
1,m

2
2,m

2
A)

+A3D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
2,m

2
2,m

2
A)] , (4.23)

where we have used p2 = m2
A and the following identity

Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A) = pµC2(0, p

2, p2,m2
1,m

2
2,m

2
A) , (4.24)

as well as the similar identities for D functions. As anticipated earlier, this expression shows

that the one-loop DM-nucleon scattering amplitude is finite in the zero momentum-transfer

limit. Moreover, since F is proportional to m2
A and the C2 and D3 functions behave as

constants in the limit mA → 0 (see appendix B for details), the amplitude vanishes (as

expected) in the limit mA → 0. It is highly non-trivial to satisfy both conditions at the

same time, therefore this is an important test of our results.

5 Numerical studies

Having the explicit expression of the one-loop DM-nucleon recoiling cross section σ(1)
AN in

eq. (4.1) with its loop function F in eq. (4.23), we can calculate the magnitude of the DM-

nucleon cross section with typical model parameters. In this section, we take vS = 1 TeV,
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Thus, the total one-loop contributions to the factor F is given by

F =
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2
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Note that in the derivation of eq. (4.21) we have used the tree-level relations from eq. (2.7)

and the DM particle on-shell condition p2 = m2
A.

We can utilize the Passarino-Veltman C and D functions as defined in refs. [24–26] to

further reduce the expression of F to be
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as well as the similar identities for D functions. As anticipated earlier, this expression shows

that the one-loop DM-nucleon scattering amplitude is finite in the zero momentum-transfer

limit. Moreover, since F is proportional to m2
A and the C2 and D3 functions behave as

constants in the limit mA → 0 (see appendix B for details), the amplitude vanishes (as

expected) in the limit mA → 0. It is highly non-trivial to satisfy both conditions at the

same time, therefore this is an important test of our results.
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AN in
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1vHs2α + 2m2

2vHc2α −m2
1vSs2α +m2

2vSs2α) ,

A2 ≡ −2m4
1sα[(m

2
1 + 5m2

2)vScα − (m2
1 −m2

2)(vSc3α + 4vHs3α)] , (4.22)

A3 ≡ 2m4
2cα[(5m

2
1 +m2

2)vSsα − (m2
1 −m2

2)(vSs3α + 4vHc3α)] .

Note that in the derivation of eq. (4.21) we have used the tree-level relations from eq. (2.7)

and the DM particle on-shell condition p2 = m2
A.

We can utilize the Passarino-Veltman C and D functions as defined in refs. [24–26] to

further reduce the expression of F to be

F = − s2α(m2
1 −m2

2)

128π2vHv3Sm
2
1m

2
2

pµ[A1Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A)

+A2Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
1,m

2
2,m

2
A)

+A3Dµ(0, 0, p
2, p2, 0,m2

A,m
2
1,m

2
2,m

2
2,m

2
A)]

= −s2α(m2
1 −m2

2)m
2
A

128π2vHv3Sm
2
1m

2
2

[A1C2(0,m
2
A,m

2
A,m

2
1,m

2
2,m

2
A)

+A2D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
1,m

2
2,m

2
A)

+A3D3(0, 0,m
2
A,m

2
A, 0,m

2
A,m

2
1,m

2
2,m

2
2,m

2
A)] , (4.23)

where we have used p2 = m2
A and the following identity

Cµ(0, p
2, p2,m2

1,m
2
2,m

2
A) = pµC2(0, p

2, p2,m2
1,m

2
2,m

2
A) , (4.24)

as well as the similar identities for D functions. As anticipated earlier, this expression shows

that the one-loop DM-nucleon scattering amplitude is finite in the zero momentum-transfer

limit. Moreover, since F is proportional to m2
A and the C2 and D3 functions behave as

constants in the limit mA → 0 (see appendix B for details), the amplitude vanishes (as

expected) in the limit mA → 0. It is highly non-trivial to satisfy both conditions at the

same time, therefore this is an important test of our results.

5 Numerical studies

Having the explicit expression of the one-loop DM-nucleon recoiling cross section σ(1)
AN in

eq. (4.1) with its loop function F in eq. (4.23), we can calculate the magnitude of the DM-

nucleon cross section with typical model parameters. In this section, we take vS = 1 TeV,
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4 Explicit calculation of the one-loop DM-nucleon amplitude at zero-
momentum transfer

In this section, we are going to calculate the one-loop contributions to the DM-nucleon

scattering cross section. We would like to first argue that some diagrams that would in

principle contribute to the scattering amplitude, can be omitted because they are sub-

dominant. At the fundamental level, the DM-nucleon scattering can be understood as the

scattering of the DM particle A with light quarks, q = u, d, s, and gluons. Since the light

quark Yukawa couplings are extremely small, the diagrams with multiple insertions of light

quark Yukawa couplings, exemplified in diagrams (a) and (b) in figure 2, are expected to

be negligibly small. Hence, it is sufficient for the required precision to keep only diagrams

with only one light quark Yukawa coupling insertion. Also, it is easy to show that the

one-loop corrections to the external quark lines and the vertices hiq̄q are always propor-

tional to the their tree-level counterparts, which means that they are canceled identically

in the limit of zero momentum transfer. Therefore, the remaining diagrams for DM-quark

scattering can be viewed as the one-loop vertex corrections to AAh1 and AAh2. On the

other hand, the DM nuclear recoils can also be induced by the DM-gluon scattering, for

which the next-leading-order contribution emerges at the two-loop level. In contrast to the

quark case, the diagrams like the one in figure 2(c) with two internal Higgs lines attached

to the top loop, should be of the same order as the two-loop ones with only one Higgs

coupling to the top loop, since the top quark Yukawa coupling is of O(1). Nevertheless,

in the present paper, we restrict ourselves to the calculation of diagrams with only one

Higgs coupling to the top quark loop, assuming that other diagrams with double Higgs

coupling should be much smaller. Actually, based on the computations in ref. [22], we have

good reasons to expect that this is indeed the case. Concluding, we are going to focus on

the diagrams with only a single Higgs Yukawa coupling either to an external light quark

line (for DM-light quark scattering) or to a loop top quark line (for DM-gluon scattering).

Therefore we can reduce our calculation to the one-loop corrections V (1)
AA1, AA2 to the ver-

tices AAh1 and AAh2, respectively, combining the Higgs-quark and Higgs-gluon couplings

to a nucleon into a single Higgs-nucleon-nucleon form factor fNmN/vH , as we did for the

tree-level diagrams in section 3.

Furthermore, we will work in the limit of zero momentum transfer q2 → 0 in order to

simplify our calculation, which is justified by the fact that the terms proportional to q2 are

suppressed further by powers of the relative DM velocities as previously was illustrated in

the case of the tree-level computations. As a result, the one-loop contributions to the DM

nuclear recoil reactions in the present model can be represented as

σ(1)
AN =

f2
N

πv2H

m2
Nµ2

AN

m2
A

F2 , (4.1)

where the one-loop function F is defined as

F =
V (1)
AA1cα
m2

1

−
V (1)
AA2sα
m2

2

(4.2)
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Figure 8. The DM-nucleon scattering cross section σAN as the function of the DM mass mA. The
blue solid curve represents the exact leading-order one-loop contribution in the limit of vanishing
DM velocity, while the yellow dashed curve displays the approximate results proposed in ref. [10].

m2 = 300GeV, sα = 0.1, while leaving the DM mass varying freely. Note that we have

reduced the final analytic expression for F in terms of the Passarino-Veltman functions, so

that it is easy to calculate it numerically adopting the package LoopTools [26]. The final

result is displayed in figure 8 as the smooth solid blue curve. We note that, for the given

set of parameters, the DM-nucleon scattering cross section varies between 10−58 cm2 and

10−52 cm2 when the DM mass mA is in the range of 1–105GeV. For the same set of the

parameters the curve has a maximum value of σ(1)
ANmax ∼ 3×10−53 cm2 for mA ∼ 630GeV.

This should be compared with the tree-level contribution at the leading order of the DM

velocity given in eq. (3.2), which predicts σtree
AN ∼ 10−69–10−65 cm2 with the same set of

parameters. Thus, we can conclude that the leading-order DM-nucleon cross section is

provided by the one-loop contributions at vanishing DM velocity, rather than the finite

velocity corrections.

In contrast, we also show as the dashed yellow curve in figure 8 the following approxi-

mation proposed in ref. [10] as an estimate of the one-loop cross-section

σ(1)
AN ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s2α
64π5

m4
Nf2

N

m4
1v

2
H

m8
2

m2
Av

6
S

, mA ≥ m2

s2α
64π5

m4
Nf2

N

m4
1v

2
H

m4
2m

2
A

v6S
, mA ≤ m2

. (5.1)

It is clear that when mA lies below 1TeV, the approximation is about one-order larger than

the exact result, while, if mA ≫ 1TeV, the exact σ(1)
AN is almost one-order higher. Never-

theless, these two curves share almost the same scaling behaviour in the limits of very small
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