A liquid xenon bubble chamber for Dark Matter detection

Matthew Szydagis, on behalf of

Cecilia Levy University at Albany

Dark Matter

Direct DM Search Today

3 detection channels (light, charge, heat): 2 used at most

3 main experimental techniques (cryogenic crystals, liquid nobles, superheated bubble chambers)

LXe TPCs lead the field

All experiments lose some information in one way or another.

What if...

... you could build a DM detector that has zero loss of information?

 \longrightarrow active on all 3 detections channels

... what if it could be done by adapting/merging current detectors/technology ?

The Making Of a New DM Detector

DM detection relies on distinguishing between ER and NR \longrightarrow low misidentification probability \longrightarrow energy information

LXe detectors:

Is there a way to combine LXe technology with something else to make it better? \longrightarrow needs to gain heat information \longrightarrow needs to gain lower misidentification probability

Scintillating Xenon Bubble Chamber

LXe detector + bubble chamber = LXe bubble chamber

- \longrightarrow has energy information
- \longrightarrow has great misidentification probability
- \longrightarrow active on all 3 channels at a time!

How do we know it will work?

First simulation results:

- 1 in a million misidentification probability
- a factor 4000 better than LXe detectors!

First xenon bubble chamber (Glaser, 1956): bubbles due to gammas in LXe after adding additive to quench scintillation

Other Advantages of a LXe Bubble Chamber

What will the backgrounds be?

 \rightarrow the only background left is NR

- can be shielded against
- careful choice of material

 \rightarrow to be fair, (α ,n) reactions still a problem

Sub-keV threshold detector = 100% NR efficiency above threshold

 \rightarrow no more need for 40-50% fiducialization

Can we broaden the kinds of physics these experiments are sensitive to?

Sub-keV threshold detector =

- probe parameter space above neutrino floor at low masses
- sensitive to coherent neutrino scattering : at -40.C and low pressures ~0.5 keVnr

How it works: LXe TPC

How it works: Bubble Chamber

Visible tracks in bubble chamber = possibility to use directionality for ultralight (relativistic) WIMPs and/or dark photon / **dark sector mediators**

How it works: LXe Bubble Chamber

Energy resolution from LXe + discrimination power from BC

No loss of information

Introducing BubXe

A prototype LXe Bubble Chamber at SUNY Albany

Thick quartz vessel will contain ~50g of LXe
Operated at -40°C, 220-300 psia

Fine tuning may increase

energy resolution

 $E_{p}=662 \text{ keV}$ U LXe, T=-110°C G Ke G KeG Ke

Started small...

Successful leak and compression cycles tests

operation

Introducing BubXe

Moving to bigger chamber for "real" tests, first water then LXe

- Test signal from piezo
- Camera is good to go
- VUV MPPC test from Hamamatsu
- Rough DAQ in place
- PnID in place

 \longrightarrow Water Cerenkov Bubble chamber should be operational this summer

Directional Dark Matter

Neutrino floor is a hard stop for current (and planned) DM detectors

Directionality: only known way to get through the neutrino floor

- \rightarrow looks at the direction of the incoming particle
- \longrightarrow has already been proposed to detect DM
- \rightarrow interesting idea but never really developed

DM comes from the direction of the Cygnus constellation (direction of solar motion)

 \rightarrow Can we identify particles based on their incoming direction?

Differentiating between WIMPs and Neutrinos

Yes, one can differentiate between WIMPs and neutrinos (in theory)

No, no-one has ever done that in practice (no detector has the potential to do that)

Unfortunately directionality only useable in gas detectors (length of electron tracks)
 But ton-scale gas detectors will require large, expensive readout systems.

But BubXe is a gas detector, and also a liquid one \rightarrow how to test for directionality?

Directionality with BubXe

Requires long electron track in the bubble: ok with alternating electric field

 \rightarrow look at scintillation pattern, shape, timing etc...

- \rightarrow try to find a way to discriminate between WIMPs and neutrinos
- * Requires a very precise calibration system to measure NRs
- * Coincidentally, the same calibration system can be used for ERs discrimination
- * Can also be used as global calibration system to directly measure recoil energy

Conclusion

Liquid xenon bubble chamber is being developed at UAlbany

- Liquid detector that is also a gas detector whenever you want it to be!
- First detector design that can potentially go beyond the neutrino floor.

Many more advantages:

- energy information + amazing discrimination in 1 detector
- 3 detection channels active including heat
- no loss of information \longrightarrow especially useful at low energies
- ability to manage operating conditions (temperature and pressure)
- very easily tunable to different target material
- useful to have now for feedback on current experiments
- · useful in case of discovery, more information will be needed
- useful in case of no discovery, a new more sensitive dark matter detector?

Status:

- basic setup in place
- equipment tested to extreme conditions
- everything checks out
- 1st water Cerenkov test expected this summer
- 1st xenon test expected by the end of the year