Benchmark scenarios and resonant decays in singlet models at the LHC run 2

Marco Sampaio & R. Costa & M. Mühlleitner & R. Santos

6th November, 2015

Scalars 2015, University of Warsaw

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

1 The Models & their motivation

- 2 Chain decays in singlet models
- 3 Comparison with the NMSSM @ LHC13

4 Final Remarks

1 The Models & their motivation

2 Chain decays in singlet models

3 Comparison with the NMSSM @ LHC13

4 Final Remarks

Among the simplest extensions of the SM but yet they can:

Among the simplest extensions of the SM but yet they can:

Provide dark matter candidates

Silveira, Zee Phys.Lett., B161:136, 1985.

 Improve stability of SM @ high energies for a recent study with a complex singlet see
 R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

Help explain the baryon asymmetry of the Universe

S. Profumo, M. J. Ramsey-Musolf, G. Shaughnessy, JHEP, 0708:010, 2007

Rich phenomenology with Higgs-to-Higgs decays

Among the simplest extensions of the SM but yet they can:

Provide dark matter candidates

Silveira, Zee Phys.Lett., B161:136, 1985.

Improve stability of SM @ high energies for a recent study with a complex singlet see R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

Help explain the baryon asymmetry of the Universe

S. Profumo, M. J. Ramsey-Musolf, G. Shaughnessy, JHEP, 0708:010, 2007

Rich phenomenology with Higgs-to-Higgs decays

Among the simplest extensions of the SM but yet they can:

Provide dark matter candidates

Silveira, Zee Phys.Lett., B161:136, 1985.

Improve stability of SM @ high energies

for a recent study with a complex singlet see R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

Help explain the baryon asymmetry of the Universe

S. Profumo, M. J. Ramsey-Musolf, G. Shaughnessy, JHEP, 0708:010, 2007

Rich phenomenology with Higgs-to-Higgs decays

Among the simplest extensions of the SM but yet they can:

Provide dark matter candidates

Silveira, Zee Phys.Lett., B161:136, 1985.

Improve stability of SM @ high energies for a recent study with a complex singlet see R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

Help explain the baryon asymmetry of the Universe

S. Profumo, M. J. Ramsey-Musolf, G. Shaughnessy, JHEP, 0708:010, 2007

Rich phenomenology with Higgs-to-Higgs decays

LHC run 2 \rightarrow start probing Higgs self couplings \Rightarrow opportunity also to probe extended Higgs sectors

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018

R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

SM plus $\mathbb{S} = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \to -A$

 $V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\delta_2}{2}H^{\dagger}H|\mathbb{S}|^2 + \frac{b_2}{2}|\mathbb{S}|^2 + \frac{d_2}{4}|\mathbb{S}|^4 + \left(\frac{b_1}{4}\mathbb{S}^2 + a_1\mathbb{S} + c.c.\right)$

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018

R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

SM plus $\mathbb{S} = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \to -A$

 $V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\delta_2}{2}H^{\dagger}H|\mathbb{S}|^2 + \frac{b_2}{2}|\mathbb{S}|^2 + \frac{d_2}{4}|\mathbb{S}|^4 + \left(\frac{b_1}{4}\mathbb{S}^2 + a_1\mathbb{S} + c.c.\right)$

Z₂ phase ($v_S \neq 0$, $v_A = 0$): 2 Higgs mix + 1 dark

$$\begin{pmatrix} h_1 \\ h_2 \\ h_{DM} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ s \\ A \end{pmatrix}$$

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018

R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

SM plus $\mathbb{S} = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \to -A$

 $V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\delta_2}{2}H^{\dagger}H|\mathbb{S}|^2 + \frac{b_2}{2}|\mathbb{S}|^2 + \frac{d_2}{4}|\mathbb{S}|^4 + \left(\frac{b_1}{4}\mathbb{S}^2 + a_1\mathbb{S} + c.c.\right)$

Z₂ phase ($v_S \neq 0$, $v_A = 0$): 2 Higgs mix + 1 dark

$$\begin{pmatrix} h_1 \\ h_2 \\ h_{DM} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ s \\ A \end{pmatrix}$$

D \mathbb{Z}_2 phase ($v_S \neq 0, v_A \neq 0$): 3 Higgs mix

$$\left(\begin{array}{c}h_1\\h_2\\h_3\end{array}\right) = \left(\begin{array}{cc}R_{1h} & R_{1S} & R_{1A}\\R_{2h} & R_{2S} & R_{2A}\\R_{3h} & R_{3S} & R_{3A}\end{array}\right) \left(\begin{array}{c}h\\s\\a\end{array}\right)$$

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018

R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

R. Costa, A. Morais, MOPS, R. Santos, Phys.Rev. D92 (2015) 2, 025024

SM plus $\mathbb{S} = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \to -A$

 $V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\delta_2}{2}H^{\dagger}H|\mathbb{S}|^2 + \frac{b_2}{2}|\mathbb{S}|^2 + \frac{d_2}{4}|\mathbb{S}|^4 + \left(\frac{b_1}{4}\mathbb{S}^2 + a_1\mathbb{S} + c.c.\right)$

Z₂ phase ($v_S \neq 0$, $v_A = 0$): 2 Higgs mix + 1 dark

$$\begin{pmatrix} h_1 \\ h_2 \\ h_{DM} \end{pmatrix} = \begin{pmatrix} \kappa_1 & -\sin\alpha & 0 \\ \kappa_2 & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ S \\ A \end{pmatrix}$$

Z/2 phase ($v_S \neq 0, v_A \neq 0$): 3 Higgs mix

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \kappa_1 & R_{1S} & R_{1A} \\ \kappa_2 & R_{2S} & R_{2A} \\ \kappa_3 & R_{3S} & R_{3A} \end{pmatrix} \begin{pmatrix} h \\ S \\ A \end{pmatrix}$$

A. Datta, A. Raychaudhuri, Phys.Rev., D57:2940-2948, 1998

R. Schabinger, J. D. Wells, Phys.Rev., D72:093007, 2005 + . . . lots

SM plus S (real field) \mathbb{Z}_2 symmetry $S \rightarrow -S$

$$V = rac{m^2}{2}H^\dagger H + rac{\lambda}{4}(H^\dagger H)^2 + rac{\lambda_{HS}}{2}H^\dagger HS^2 + rac{m_S^2}{2}S^2 + rac{\lambda_S}{4!}S^4$$

A. Datta, A. Raychaudhuri, Phys.Rev., D57:2940-2948, 1998

R. Schabinger, J. D. Wells, Phys.Rev., D72:093007, 2005 + . . . lots

SM plus S (real field) \mathbb{Z}_2 symmetry $S \rightarrow -S$

$$V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\lambda_{HS}}{2}H^{\dagger}HS^2 + \frac{m^2_S}{2}S^2 + \frac{\lambda_S}{4!}S^4$$

Z₂ phase ($v_S = 0$): dark matter

$$\left(\begin{array}{c}h_1\\h_{DM}\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right) \left(\begin{array}{c}h\\S\end{array}\right)$$

A. Datta, A. Raychaudhuri, Phys.Rev., D57:2940-2948, 1998

R. Schabinger, J. D. Wells, Phys.Rev., D72:093007, 2005 + . . . lots

SM plus S (real field) \mathbb{Z}_2 symmetry $S \rightarrow -S$

$$V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\lambda_{HS}}{2}H^{\dagger}HS^2 + \frac{m^2_S}{2}S^2 + \frac{\lambda_S}{4!}S^4$$

Z₂ phase ($v_S = 0$): dark matter

$$\left(\begin{array}{c}h_1\\h_{DM}\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right) \left(\begin{array}{c}h\\S\end{array}\right)$$

Z/2 phase ($v_S \neq 0$): 2 Higgs mix

$$\left(\begin{array}{c}h_1\\h_2\end{array}\right) = \left(\begin{array}{cc}\cos\alpha & -\sin\alpha\\\sin\alpha & \cos\alpha\end{array}\right) \left(\begin{array}{c}h\\S\end{array}\right)$$

A. Datta, A. Raychaudhuri, Phys.Rev., D57:2940-2948, 1998

R. Schabinger, J. D. Wells, Phys.Rev., D72:093007, 2005 + . . . lots

SM plus S (real field) \mathbb{Z}_2 symmetry $S \rightarrow -S$

$$V = \frac{m^2}{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^2 + \frac{\lambda_{HS}}{2}H^{\dagger}HS^2 + \frac{m^2_S}{2}S^2 + \frac{\lambda_S}{4!}S^4$$

Z₂ phase ($v_S = 0$): dark matter

$$\left(\begin{array}{c}h_1\\h_{DM}\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right) \left(\begin{array}{c}h\\S\end{array}\right)$$

Z/2 phase ($v_S \neq 0$): 2 Higgs mix

$$\left(\begin{array}{c}h_1\\h_2\end{array}\right) = \left(\begin{array}{c}\kappa_1 & -\sin\alpha\\\kappa_2 & \cos\alpha\end{array}\right) \left(\begin{array}{c}h\\S\end{array}\right)$$

In singlet models, various LO (in EW corrections) observables, related to SM by a factor of κ^2 :

Production cross sections:

 $\sigma_i = \kappa_i^2 \sigma_{SM}$

Decay widths to SM particles:

 $\Gamma_i = \kappa_i^2 \Gamma_{SM}$

Total decay width:

$$\Gamma_{i}^{total} = \kappa_{i}^{2} \Gamma_{SM}^{total} + \sum_{jk} \Gamma_{i \to jk}$$

In singlet models, various LO (in EW corrections) observables, related to SM by a factor of κ^2 :

Production cross sections:

 $\sigma_i = \kappa_i^2 \sigma_{SM}$

Decay widths to SM particles:

 $\Gamma_i = \kappa_i^2 \Gamma_{SM}$

Total decay width:

$$\Gamma_i^{total} = \kappa_i^2 \Gamma_{SM}^{total} + \sum_{jk} \Gamma_{i o jk}$$

In singlet models, various LO (in EW corrections) observables, related to SM by a factor of κ^2 :

Production cross sections:

 $\sigma_i = \kappa_i^2 \sigma_{SM}$

Decay widths to SM particles:

 $\Gamma_i = \kappa_i^2 \Gamma_{SM}$

Total decay width:

$$\Gamma_i^{total} = \kappa_i^2 \Gamma_{SM}^{total} + \sum_{jk} \Gamma_{i \to jk}$$

Some remarks on the NMSSM

In the NMSSM a singlet superfield (\hat{S}) is introduced to (dynamically) solve the μ -problem. Then

$$(H_1, H_2, H_3)^T = \mathcal{R}^S(h_d, h_u, h_s)^T$$
$$(A_1, A_2, G)^T = \mathcal{R}^P \mathcal{R}^G(a_d, a_u, a_s)^T$$

Some remarks on the NMSSM

In the NMSSM a singlet superfield (\hat{S}) is introduced to (dynamically) solve the μ -problem. Then

$$(H_1, H_2, H_3)^T = \mathcal{R}^S(h_d, h_u, h_s)^T$$
$$(A_1, A_2, G)^T = \mathcal{R}^P \mathcal{R}^G(a_d, a_u, a_s)^T$$

Why compare with NMSSM?

- Singlet creates a 3 × 3 CP-even sector
- CP-odd sector introduces more cases
- Constrained by SUSY relations but more parameters

Phenomenological constraints

A. Djouadi, J. Kalinowski, M. Spira, Comput.Phys.Commun., 108:56-74, 1998. http://people.web.psi.ch/spira/hdecay/

SHDECAY: Implemented the 4 models in a modified HDECAY with higher order EW corrections off

www.itp.kit.edu/~maggie/sHDECAY

Phenomenological constraints

A. Djouadi, J. Kalinowski, M. Spira, Comput.Phys.Commun., 108:56-74, 1998. http://people.web.psi.ch/spira/hdecay/

sHDECAY: Implemented the 4 models in a modified HDECAY with higher order EW corrections off

www.itp.kit.edu/~maggie/sHDECAY

Pheno constraints (CxSM & RxSM) imposed in ScannerS:

scanners.hepforge.org

- Electroweak precision observables STU
- Collider bounds (LEP, Tevatron, LHC) HiggsBounds
- Used ATLAS+CMS global signal rate $\mu_{h_{125}} = 1.09 \pm 0.11$
- Dark matter relic density below Planck measurement & bounds from LUX on *σ_{SI}* (micrOMEGAs)

Phenomenological constraints

A. Djouadi, J. Kalinowski, M. Spira, Comput.Phys.Commun., 108:56-74, 1998. http://people.web.psi.ch/spira/hdecay/

sHDECAY: Implemented the 4 models in a modified HDECAY with higher order EW corrections off

www.itp.kit.edu/~maggie/sHDECAY

Pheno constraints (CxSM & RxSM) imposed in ScannerS:

scanners.hepforge.org

- Electroweak precision observables STU
- Collider bounds (LEP, Tevatron, LHC) HiggsBounds
- Used ATLAS+CMS global signal rate $\mu_{h_{125}} = 1.09 \pm 0.11$
- Dark matter relic density below Planck measurement & bounds from LUX on *σ_{Sl}* (micrOMEGAs)

NMSSM: Similar constraints imposed. Used a sample from

S.F. King, M. Muhlleitner, R. Nevzorov, K. Walz, Phys.Rev., D90(9):095014, 2014

1 The Models & their motivation

2 Chain decays in singlet models

3 Comparison with the NMSSM @ LHC13

4 Final Remarks

Chain decay contributions to the signal strength

Large chain decays @ LHC2: **CxSM-broken** $h_1 \equiv h_{125}$

- Tail on the right due to STU
- LHC Run 1 still allows scenarios with large chain decays

Up to
$$\sim$$
 6% (\sim 12%) at 2 σ (3 σ)

Large chain decays @ LHC2: **CxSM-broken** $h_2 \equiv h_{125}$

- LHC Run 1 allows scenarios with smaller chain decays
- But still up to \sim 2% (\sim 6%) for the 2 σ (3 σ)
- Due to one less channel contributing + different kinematics

Large chain decays @ LHC2: CxSM-dark vs RxSM

- Models much more similar
- LHC Run 1 allows scenarios with even larger chain decays
- Up to \sim 7% 9% (\sim 15% 17%) for the 2 σ (3 σ)

1 The Models & their motivation

2 Chain decays in singlet models

3 Comparison with the NMSSM @ LHC13

4 Final Remarks

Aim: Find differences between NMSSM & CxSM-broken

1
$$\Phi \to h_{125} + h_{125}$$

Example: $h_3 \rightarrow h_1 + h_1$, $h_1 \equiv h_{125}$; (...)

$$2 \Phi \rightarrow h_{125} + \varphi$$

Example: $h_3 \rightarrow h_{125} + h_2$; $A_2 \rightarrow h_{125} + A_1$; (...)

3
$$h_{125} \rightarrow \varphi_i + \varphi_j$$

Example: $h_3 \equiv h_{125} \rightarrow h_1 + h_1; (...)$

$$4 \quad \Phi \to \varphi + \varphi$$

Example: $h_3 \rightarrow h_1 + h_1$, $h_2 \equiv h_{125}$; (...)

1 $\Phi \rightarrow h_{105} + h_{105}$

Aim: Find differences between NMSSM & CxSM-broken

Example:
$$h_3 \rightarrow h_1 + h_1$$
, $h_1 \equiv h_{125}$; (...)
 $h_{125} \rightarrow h_{125}$
 $\Phi \rightarrow h_{125} + \varphi$
Example: $h_3 \rightarrow h_{125} + h_2$; $A_2 \rightarrow h_{125} + A_1$; (...)
 $h_{125} \rightarrow \phi$

$$\frac{h_{125} \rightarrow \varphi_i + \varphi_j}{\text{Example: } h_2 \equiv h_{125} \rightarrow h_1 + h_1; (.)}$$

4
$$\Phi \rightarrow \varphi + \varphi$$

Example: $h_3 \rightarrow h_1 + h_1$, $h_2 \equiv h_{125}$; (...)

_Φ

 $\Phi \rightarrow h_{\mu\nu} + h_{\mu\nu}$

Aim: Find differences between NMSSM & CxSM-broken

Example: $h_3 \rightarrow h_1 + h_1$, $h_2 \equiv h_{125}$; (...)

.Φ

Aim: Find differences between NMSSM & CxSM-broken

Φ

Aim: Find differences between NMSSM & CxSM-broken

1
$$\Phi \to h_{125} + h_{125}$$

Example: $h_3 \rightarrow h_1 + h_1$, $h_1 \equiv h_{125}$; (...) Inconclusive

$$2 \quad \Phi \to h_{125} + \varphi$$

Example: $h_3 \to h_{125} + h_2$; $A_2 \to h_{125} + A_1$; (...) Interesting case!

$$1 h_{125} \rightarrow \varphi_i + \varphi_j$$

Example: $h_3 \equiv h_{125} \rightarrow h_1 + h_1$; (...) Inconclusive

4
$$\Phi \rightarrow \varphi + \varphi$$

Example: $h_3 \rightarrow h_1 + h_1$, $h_2 \equiv h_{125}$; (...) Inconclusive

Strategy for plots: Focus on (representative) 4b final state

CxSM-broken vs NMSSM: Case 2 & $h_1 \equiv h_{125}$

- NMSSM points can go up by up to 2 orders of magnitude compared to CxSM-broken
- This also happens in the next-to-lightest scenario

CxSM-broken vs NMSSM: Case 2 & $h_2 \equiv h_{125}$

- NMSSM points can go up by up to 2 orders of magnitude compared to CxSM-broken
- This also happens in the next-to-lightest scenario

- 1 The Models & their motivation
- 2 Chain decays in singlet models
- 3 Comparison with the NMSSM @ LHC13

4 Final Remarks

Leading principles (whenever possible!):

- Cover kinematically interesting situations
- Maximize the visiblility of the new scalars (i.e. maximize chain decay cross-sections)
- Stability up to a large cutoff scale
- In CxSM-dark, $\Omega_A h^2$ explains Planck measurement

Points submitted to "WG3: Extended scalars benchmarking" for YR4.

https://indico.cern.ch/event/443289/

Remarks on benchmarks – CxSM-broken

	CxSM.B1	CxSM.B2	CxSM.B3	CxSM.B4	CxSM.B5
m_{h_1} (GeV)	125	125	57.8	86.8	33.2
m_{h_2} (GeV)	261	228	125	125	65.0
m_{h_3} (GeV)	450	311	299	292	125
$\mu_{h_{125}}^C/\mu_{h_{125}}^T$	0.0127	0.0407	0.0128	0.0104	0
μ_{h_1}	0.836	0.771	0.0362	0.0958	0.00767
$\sigma_1 \equiv \sigma(gg \to h_1)$	$36.1 \; [pb]$	33.3 [pb]	$6.42 \; [pb]$	$8.03 \; [pb]$	4.61 [pb]
$\sigma_1 \times BR(h_1 \to WW)$	7.03 [pb]	$6.49 \; [pb]$	$0.314 \; [fb]$	9.35 [fb]	$< 0.01 \; [fb]$
$\sigma_1 \times \mathrm{BR}(h_1 \to ZZ)$	880 [fb]	$812 \; [fb]$	0.0969 [fb]	2.22 [fb]	$< 0.01 \; [fb]$
$\sigma_1 \times BR(h_1 \rightarrow bb)$	$22.2 \ [pb]$	20.5 [pb]	5.56 [pb]	6.72 [pb]	4.06 [pb]
$\sigma_1 \times BR(h_1 \to \tau \tau)$	2.13 [pb]	1.97 [pb]	455 [fb]	599 [fb]	297 [fb]
$\sigma_1 \times \mathrm{BR}(h_1 \to \gamma \gamma)$	77.9 [fb]	71.9 [fb]	2.61 [fb]	8.29 [fb]	0.568 [fb]
μ_{h_2}	0.0752	0.0759	0.784	0.785	0.0106
$\sigma_2 \equiv \sigma(gg \rightarrow h_2)$	1.01 [pb]	1.11 [pb]	35.1 [pb]	33.9 [pb]	1.51 [pb]
$\sigma_2 \times BR(h_2 \to WW)$	618 [fb]	784 [fb]	$6.55 \; [pb]$	$6.62 \ [pb]$	0.167 [fb]
$\sigma_2 \times \mathrm{BR}(h_2 \to ZZ)$	265 [fb]	319 [fb]	819 [fb]	828 [fb]	0.0499 [fb]
$\sigma_2 \times BR(h_2 \to bb)$	0.932 [fb]	1.86 [fb]	$20.9 \; [pb]$	$20.9 \ [pb]$	1.30 [pb]
$\sigma_2 \times BR(h_2 \rightarrow \tau \tau)$	0.103 [fb]	0.201 [fb]	$2.01 \; [pb]$	$2.00 \ [pb]$	109 [fb]
$\sigma_2 \times BR(h_2 \rightarrow \gamma \gamma)$	0.0189 [fb]	0.0373 [fb]	73.1 [fb]	73.2 [fb]	0.791 [fb]
$\sigma_2 \times BR(h_2 \rightarrow h_1 h_1)$	122 [fb]	0	1.25 [pb]	0	0
$\sigma_2 \times BR(h_2 \to h_1 h_1 \to bbbb)$	46.2 [fb]	0	936 [fb]	0	0
$\sigma_2 \times \mathrm{BR}(h_2 \to h_1 h_1 \to b b \tau \tau)$	8.86 [fb]	0	153 [fb]	0	0
$\sigma_2 \times BR(h_2 \to h_1 h_1 \to bbWW)$	29.2 [fb]	0	0.106 [fb]	0	0
$\sigma_2 \times BR(h_2 \rightarrow h_1 h_1 \rightarrow bb\gamma\gamma)$	0.324 [fb]	0	0.878 [fb]	0	0
$\sigma_2 \times \text{BR}(h_2 \to h_1 h_1 \to \tau \tau \tau \tau)$	0.425 [fb]	0	6.28 [fb]	0	0

Remarks on benchmarks – CxSM-broken

	CxSM.B1	CxSM.B2	CxSM.B3	CxSM.B4	CxSM.B5
μ_{h_3}	0.0558	0.0791	0.0788	0.0491	0.863
$\sigma_3 \equiv \sigma(gg \rightarrow h_3)$	520 [fb]	$1.46 \; [pb]$	1.48 [pb]	1.20 [pb]	42.4 [pb]
$\sigma_3 \times BR(h_3 \rightarrow WW)$	201 [fb]	518 [fb]	536 [fb]	343 [fb]	7.26 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to ZZ)$	95.1 [fb]	232 [fb]	238 [fb]	151 [fb]	$909 \; [fb]$
$\sigma_3 \times BR(h_3 \rightarrow bb)$	0.0638 [fb]	0.450 [fb]	0.525 [fb]	0.362 [fb]	$23.0 \ [pb]$
$\sigma_3 \times BR(h_3 \to \tau \tau)$	$< 0.01 \; [{\rm fb}]$	0.0513 [fb]	0.0594 [fb]	0.0408 [fb]	$2.20 \ [pb]$
$\sigma_3 \times \mathrm{BR}(h_3 \to \gamma \gamma)$	$< 0.01 \; [{\rm fb}]$	$< 0.01 \; [fb]$	0.0105 [fb]	$< 0.01 ~[{\rm fb}]$	80.4 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_1 h_1)$	44.4 [fb]	706 [fb]	438 [fb]	427 [fb]	4.37 [pb]
$\sigma_3 \times BR(h_3 \to h_1 h_1 \to bbbb)$	16.8 [fb]	268 [fb]	329 [fb]	300 [fb]	3.38 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_1 h_1 \to b b \tau \tau)$	3.23 [fb]	51.4 [fb]	53.8 [fb]	53.4 [fb]	496 [fb]
$\sigma_3 \times BR(h_3 \to h_1 h_1 \to bbWW)$	10.7 [fb]	170 [fb]	0.0372 [fb]	0.833 [fb]	$< 0.01 \; [fb]$
$\sigma_3 \times BR(h_3 \to h_1 h_1 \to b b \gamma \gamma)$	0.118 [fb]	1.88 [fb]	0.308 [fb]	0.739 [fb]	0.946 [fb]
$\sigma_3 \times BR(h_3 \rightarrow h_1h_1 \rightarrow \tau \tau \tau \tau)$	0.155 [fb]	2.47 [fb]	2.20 [fb]	2.38 [fb]	18.2 [fb]
$\sigma_3 \times BR(h_3 \rightarrow h_1h_2)$	107 [fb]	0	89.0 [fb]	207 [fb]	770 [fb]
$\sigma_3 \times BR(h_3 \rightarrow h_1 h_2 \rightarrow bbbb)$	0.0608 [fb]	0	45.9 [fb]	107 [fb]	583 [fb]
$\sigma_3 \times BR(h_3 \rightarrow h_1 h_2 \rightarrow b b \tau \tau)$	0.0126 [fb]	0	8.16 [fb]	19.7 [fb]	91.6 [fb]
$\sigma_3 \times BR(h_3 \to h_1 h_2 \to bbWW)$	40.4 [fb]	0	14.4 [fb]	33.9 [fb]	0.0759 [fb]
$\sigma_3 \times BR(h_3 \rightarrow h_1h_2 \rightarrow bb\gamma\gamma)$	$< 0.01 \; [fb]$	0	0.182 [fb]	0.505 [fb]	0.437 [fb]
$\sigma_3 \times \text{BR}(h_3 \to h_1 h_2 \to \tau \tau \tau \tau)$	$< 0.01 \; [{\rm fb}]$	0	0.360 [fb]	0.912 [fb]	3.58 [fb]
$\sigma_3 \times BR(h_3 \rightarrow h_2 h_2)$	0	0	183 [fb]	75.2 [fb]	0
$\sigma_3 \times BR(h_3 \rightarrow h_2h_2 \rightarrow bbbb)$	0	0	64.7 [fb]	28.5 [fb]	0
$\sigma_3 \times BR(h_3 \rightarrow h_2 h_2 \rightarrow bb\tau\tau)$	0	0	12.4 [fb]	5.48 [fb]	0
$\sigma_3 \times BR(h_3 \to h_2 h_2 \to bbWW)$	0	0	40.6 [fb]	18.1 [fb]	0
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 h_2 \to b b \gamma \gamma)$	0	0	0.453 [fb]	0.20 [fb]	0
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 h_2 \to \tau \tau \tau \tau)$	0	0	0.596 [fb]	0.263 [fb]	0
$\log_{10}\left(\frac{\mu}{CeV}\right)$	9.40	6.05	19.3	15.7	6.64

Remarks on benchmarks – CxSM-dark

	CxSM.D1	CxSM.D2	CxSM.D3	CxSM.D4
$\star m_{h_1}$ (GeV)	125	125	56.1	121
$\star m_{h_2}$ (GeV)	335	341	125	125
$\star m_A \ (GeV)$	52.5	94.0	139	52.0
$\mu_{h_{125}}^C/\mu_{h_{125}}^T$	0.0190	0.0235	0	0
μ_{h_1}	0.804	0.837	0.00404	0.0444
$\sigma_1 \equiv \sigma(gg \rightarrow h_1)$	34.7 [pb]	36.2 [pb]	759 [fb]	2.03 [pb]
$\sigma_1 \times BR(h_1 \rightarrow WW)$	4.87 [pb]	7.05 [pb]	0.0302 [fb]	4.82 [fb]
$\sigma_1 \times \text{BR}(h_1 \rightarrow ZZ)$	609 [fb]	881 [fb]	$< 0.01 \; [fb]$	0.563 [fb]
$\sigma_1 \times BR(h_1 \rightarrow bb)$	15.4 [pb]	22.3 [pb]	658 [fb]	23.0 [fb]
$\sigma_1 \times \mathrm{BR}(h_1 \to \tau \tau)$	1.48 [pb]	2.14 [pb]	53.6 [fb]	2.19 [fb]
$\sigma_1 \times BR(h_1 \rightarrow \gamma \gamma)$	53.9 [fb]	78.1 [fb]	0.288 [fb]	0.0725 [fb]
$\sigma_1 \times BR(h_1 \rightarrow AA)$	9.75 [pb]	0	0	2.00 [pb]
μ_{h_2}	0.138	0.108	0.723	0.841
$\sigma_2 \equiv \sigma(gg \rightarrow h_2)$	1.83 [pb]	1.55 [pb]	43 [pb]	41.3 [pb]
$\sigma_2 \times BR(h_2 \rightarrow WW)$	886 [fb]	704 [fb]	6.09 [pb]	7.08 [pb]
$\sigma_2 \times BR(h_2 \rightarrow ZZ)$	402 [fb]	320 [fb]	762 [fb]	886 [fb]
$\sigma_2 \times BR(h_2 \rightarrow bb)$	0.620 [fb]	0.468 [fb]	19.2 [pb]	22.4 [pb]
$\sigma_2 \times BR(h_2 \rightarrow \tau \tau)$	0.0717 [fb]	0.0543 [fb]	1.85 [pb]	2.15 [pb]
$\sigma_2 \times BR(h_2 \rightarrow \gamma \gamma)$	0.0121 [fb]	$< 0.01 \; [{\rm fb}]$	67.4 [fb]	78.5 [fb]
$\sigma_2 \times BR(h_2 \rightarrow h_1h_1)$	337 [fb]	436 [fb]	11.8 [pb]	0
$\sigma_2 \times BR(h_2 \rightarrow h_1h_1 \rightarrow bbbb)$	66.2 [fb]	165 [fb]	8.86 [pb]	0
$\sigma_2 \times BR(h_2 \rightarrow h_1h_1 \rightarrow bb\tau\tau)$	12.7 [fb]	31.7 [fb]	1.44 [pb]	0
$\sigma_2 \times BR(h_2 \to h_1 h_1 \to b b W W)$	41.9 [fb]	105 [fb]	0.814 [fb]	0
$\sigma_2 \times BR(h_2 \rightarrow h_1h_1 \rightarrow bb\gamma\gamma)$	0.464 [fb]	1.16 [fb]	7.76 [fb]	0
$\sigma_2 \times \text{BR}(h_2 \to h_1 h_1 \to \tau \tau \tau \tau)$	0.609 [fb]	1.52 [fb]	58.7 [fb]	0
$\sigma_2 \times \mathrm{BR}(h_2 \to AA)$	207 [fb]	91.1 [fb]	0	4.93 [pb]
$\Omega_A h^2$	0.118	0.123	0.116	0.125
$\log_{10}\left(\frac{\mu}{\text{GeV}}\right)$	14.9	17.1	6.69	6.69

Remarks on benchmarks - RxSM-dark

	RxSM.B1	RxSM.B2	RxSM.B3	RxSM.B4
m_{h_1} (GeV)	125	125	55.3	92.4
m_{h_2} (GeV)	265	173	125	125
$\mu^C_{h_{125}}/\mu^T_{h_{125}}$	0.0509	0	0	0
μ_{h_1}	0.827	0.831	0.0376	0.163
$\sigma_1 \equiv \sigma(gg \to h_1)$	$35.7 \ [pb]$	$35.9 \ [pb]$	7.26 [pb]	$12.2 \; [pb]$
$\sigma_1 \times \mathrm{BR}(h_1 \to WW)$	6.96 [pb]	$6.99 \ [pb]$	0.260 [fb]	32.3 [fb]
$\sigma_1 \times \mathrm{BR}(h_1 \to ZZ)$	871 [fb]	875 [fb]	0.0808 [fb]	5.62 [fb]
$\sigma_1 \times BR(h_1 \to bb)$	$22.0 \ [pb]$	$22.1 \ [pb]$	6.30 [pb]	10.1 [pb]
$\sigma_1 \times \text{BR}(h_1 \to \tau \tau)$	2.11 [pb]	2.12 [pb]	511 [fb]	911 [fb]
$\sigma_1 \times \mathrm{BR}(h_1 \to \gamma \gamma)$	77.2 [fb]	77.5 [fb]	2.67 [fb]	$14.6 \; [fb]$
μ_{h_2}	0.0888	0.169	0.863	0.837
$\sigma_2 \equiv \sigma(gg \to h_2)$	1.97 [pb]	4.06 [pb]	41.6 [pb]	36.2 [pb]
$\sigma_2 \times BR(h_2 \to WW)$	709 [fb]	3.90 [pb]	7.26 [pb]	7.05 [pb]
$\sigma_2 \times \mathrm{BR}(h_2 \to ZZ)$	305 [fb]	112 [fb]	$909 \; [fb]$	882 [fb]
$\sigma_2 \times \mathrm{BR}(h_2 \to bb)$	1.01 [fb]	34.2 [fb]	$23.0 \ [pb]$	$22.3 \ [pb]$
$\sigma_2 \times \mathrm{BR}(h_2 \to \tau \tau)$	0.112 [fb]	3.48 [fb]	$2.20 \ [pb]$	$2.14 \; [pb]$
$\sigma_2 \times BR(h_2 \to \gamma \gamma)$	0.0204 [fb]	0.583 [fb]	80.5 [fb]	78.1 [fb]
$\sigma_2 \times BR(h_2 \rightarrow h_1 h_1)$	959 [fb]	0	4.29 [pb]	0
$\sigma_2 \times \mathrm{BR}(h_2 \to h_1 h_1 \to b b b b)$	364 [fb]	0	3.23 [pb]	0
$\sigma_2 \times \text{BR}(h_2 \to h_1 h_1 \to b b \tau \tau)$	69.9 [fb]	0	525 [fb]	0
$\sigma_2 \times \text{BR}(h_2 \to h_1 h_1 \to b b W W)$	230 [fb]	0	0.267 [fb]	0
$\sigma_2 \times BR(h_2 \to h_1 h_1 \to b b \gamma \gamma)$	9 EE [fb]	0	9.74 [fb]	0
	2.55 [10]	0	2.74 [10]	0

Conclusions

- 1 CxSM and RxSM still allow large chain decay scenarios at LHC run 2, which can be up to \sim 16% of the direct rate
- 2 The NMSSM can be distinguished from CxSM-broken using $\Phi \rightarrow h_{125} + \varphi$ alone.
- Other channels do not allow to draw a similar conclusion so straightforwardly
- 4 Benchmark scenarios exist such that:
 - All singlet scalars will be found in the next run
 - Stability up to a high scale
 - Explain dark matter observables (in dark phase)

Conclusions

- 1 CxSM and RxSM still allow large chain decay scenarios at LHC run 2, which can be up to \sim 16% of the direct rate
- 2 The NMSSM can be distinguished from CxSM-broken using $\Phi \rightarrow h_{125} + \varphi$ alone.
- 3 Other channels do not allow to draw a similar conclusion so straightforwardly
- 4 Benchmark scenarios exist such that:
 - All singlet scalars will be found in the next run
 - Stability up to a high scale
 - Explain dark matter observables (in dark phase)

THANK YOU!

BACKUP

Differences among singlet models: Case 1 vs Case 3

Light Higgs \rightarrow not much difference (see scale next slides)

- Heavy Higgs → higher for 2 × 2 mix, CxSM-dark & RxSM (checked in NMSSM comparison)
- We can focus on CxSM-broken to compare with NMSSM

Scan boxes NMSSM

$$\begin{aligned} -\mathcal{L}_{\text{mass}} &= m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} + m_{S}^{2} |S|^{2} \\ &+ m_{\tilde{Q}_{3}}^{2} |\tilde{Q}_{3}^{2}| + m_{\tilde{t}_{R}}^{2} |\tilde{t}_{R}^{2}| + m_{\tilde{b}_{R}}^{2} |\tilde{b}_{R}^{2}| + m_{\tilde{L}_{3}}^{2} |\tilde{L}_{3}^{2}| + m_{\tilde{\tau}_{R}}^{2} |\tilde{\tau}_{R}^{2}| \, . \\ -\mathcal{L}_{\text{tril}} &= \lambda A_{\lambda} H_{u} H_{d} S + \frac{1}{3} \kappa A_{\kappa} S^{3} + h_{t} A_{t} \tilde{Q}_{3} H_{u} \tilde{t}_{R}^{c} - h_{b} A_{b} \tilde{Q}_{3} H_{d} \tilde{b}_{R}^{c} - h_{\tau} A_{\tau} \tilde{L}_{3} H_{d} \\ -\mathcal{L}_{\text{gauginos}} &= \frac{1}{2} \bigg[M_{1} \tilde{B} \tilde{B} + M_{2} \sum_{a=1}^{3} \tilde{W}^{a} \tilde{W}_{a} + M_{3} \sum_{a=1}^{8} \tilde{G}^{a} \tilde{G}_{a} + \text{h.c.} \bigg]. \end{aligned}$$

 $1 \leq \tan \beta \leq 30$, $0 \leq \lambda \leq 0.7$, $-0.7 \leq \kappa \leq 0.7$,

$$\begin{split} -2 \; \text{TeV} \leq \textit{A}_{\lambda} \leq \text{2 TeV} \;, \; -2 \; \text{TeV} \leq \textit{A}_{\kappa} \leq \text{2 TeV} \;, \; -1 \; \text{TeV} \leq \mu_{\text{eff}} \leq \text{1 TeV} \;. \\ -2 \; \text{TeV} \leq \textit{A}_{\textit{U}}, \textit{A}_{\textit{D}}, \textit{A}_{\textit{L}} \leq \text{2 TeV} \;. \end{split}$$

	Broken phase			
input parameter	Min	Max		
<i>m</i> _{<i>h</i>₁₂₅} (GeV)	125.1	125.1		
m _{hother} (GeV)	30	1000		
v (GeV)	246.22	246.22		
v _S (GeV)	1	1000		
α_1	$-\pi/2$	$\pi/2$		
α ₂	$-\pi/2$	$\pi/2$		
α_3	$-\pi/2$	$\pi/2$		

	Dark phase		
input parameter	Min	Max	
<i>m</i> _{<i>h</i>₁₂₅} (GeV)	125.1	125.1	
m _{hother} (GeV)	30	1000	
m _A (GeV)	30	1000	
v (GeV)	246.22	246.22	
v _S (GeV)	1	1000	
α_1	$-\pi/2$	$\pi/2$	
$a_1(\text{GeV}^3)$	-10 ⁸	0	

Soon poromotor	Broken phase			
Scan parameter	Min	Max		
<i>m</i> _{<i>h</i>₁₂₅} (GeV)	125.1	125.1		
m _{h(other)} (GeV)	30	1000		
v (GeV)	246.22	246.22		
v _S (GeV)	1	1000		
α	$-\pi/2$	$\pi/2$		

Stability conditions under RGE evolution

Stability conditions (imposed also in evolution):

Boundedness from below: $\lambda > 0 \land d_2 > 0 \land \delta_2 > -\sqrt{\lambda d_2}$

Perturbative unitarity:

$$\left\{ \left|\lambda\right|, \left|d_{2}\right|, \left|\delta_{2}\right|, \left|\frac{3}{2}\lambda + d_{2} \pm \sqrt{\left(\frac{3}{2}\lambda + d_{2}\right)^{2} + d_{2}^{2}} \right| \right\} \leq 16\pi$$

Stability conditions under RGE evolution

Stability conditions (imposed also in evolution):

Boundedness from below: $\lambda > 0 \land d_2 > 0 \land \delta_2 > -\sqrt{\lambda d_2}$

Perturbative unitarity:

$$\left\{ \left|\lambda\right|\,,\,\left|\textit{d}_{2}\right|\,,\,\left|\delta_{2}\right|\,,\,\left|\frac{3}{2}\lambda+\textit{d}_{2}\pm\sqrt{\left(\frac{3}{2}\lambda+\textit{d}_{2}\right)^{2}+\textit{d}_{2}^{2}}\right|\right\} \leq16\pi$$

Stability conditions under RGE evolution

Stability conditions (imposed also in evolution):

Boundedness from below: $\lambda > 0 \land d_2 > 0 \land \delta_2 > -\sqrt{\lambda d_2}$

Perturbative unitarity:

$$\left\{ \left|\lambda\right|\,,\,\left|d_{2}\right|\,,\,\left|\delta_{2}\right|\,,\,\left|\frac{3}{2}\lambda+d_{2}\pm\sqrt{\left(\frac{3}{2}\lambda+d_{2}\right)^{2}+d_{2}^{2}}\right| \right\} \leq 16\pi$$

SM seems to be metastable @ 2-loops!

G. Degrassi et al, JHEP 1208 (2012) 098

University of Aveiro

RGE stability bands – No phenomenology

RGE stability bands - No phenomenology

Marco O. P. Sampaio

University of Aveiro

RGE stability – Combined with phenomenology

Results for h_{125} chain production: parameter space

Results for h_{125} chain production: parameter space

MicrOmegas - relic density & direct detection

Implemented micrOMEGAS interface \Rightarrow present relic density **Involves:**

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Physical idea:

- Only 1 dark A out of equilibrium
- A non-relativistic (CDM)
- **relic** number density n_A governed by the Boltzmann eq.

