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Baryogenesis

Generating Baryon asymmetry requires:

C and CP violation
X present in SM quark sector
(needs enhancement... not a part of this talk though)

Baryon number violation
X SU(2) sphalerons present in SM

Departure from thermal equilibrium
I order phase transition→ BSM needed

A. D. Sakharov 67’



Baryogenesis
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If Mh < 85GeV in SM we would have a I order phase transition
Kajantie, Laine, Rummukainen, Shaposhnikov 97’



Baryon number violation

SU(2) sphalerons violate baryon number

Γsph∼T
4

Γsph∼T
4exp(-
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In thermal equilibrium SU(2) sphalerons wash out the baryon
asymmetry.
→They have to be decoupled after the phase transition

This leads to the famous bound:

v
T & 1

Shaposhnikov 85’ 86’ 87’



Singlet Scalar

We add an additional singlet scalar to SM

Vtree(h, S) = −1
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Electroweak phase transition

Scalar sphaleron: static field configuration passing the barrier
(excited through thermal fluctuations)

transition probability

Γ
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O(3) symmetric action
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Linde 81’ 83’
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Electroweak phase transition
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Two step phase transition
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Two step phase transition

Transition from 〈S〉 > 0, 〈h〉 = 0 vacuum to EW vacuum (〈S〉 >= 0, 〈h〉 = v0)

O(3) symmetric action for 2 fields
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EOMs in terms of path ~Φ(t) = (h(t),S(t))
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Electroweak phase transition-Numerical results



Collider signals

Triple Higgs coupling
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experimental accuracy at HL-LHC will be about 30%, but down to 13% at ILC



Gravitational waves

Gravitational waves are produced during a first-order phase transition by

three main mechanisms:

collisions of bubble walls
Kamionkowski ‘93, Huber ‘08,
sound waves
Hindmarsh ‘13 ‘15

magnetohydrodynamical turbulence
Caprini ‘09

Signals from all of these sources can be described by two parameters
characterising the phase transition
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Gravitational waves
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Dark Matter

To calculate the abundance of S we solve the Boltzmann equation (x = mS/T )
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=
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Conclusions

correct DM abundance cannot be obtained simultaneously with a
first-order EWPT

Small abundance is nevertheless enough to lead to exclusion by null
results in direct dark matter search experiments

Significant portion of the model parameter space is accessible at the
planned GW experiments but is beyond reach at the future collider
experiments



Cosmology modification

New energy density component ρs
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Cosmology modification - SU(2) sphaleron decoupling

SU(2) sphaleron rate
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Dark Matter
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Conclusions 2

Modification of cosmological history can significantly lower
requirements for EWBG scenarios and make their detection
more difficult

Dark Matter abundance can be increased by several orders of
magnitude, however, this leads to even worse direct detection
exclusion


