The leptonic future of the Higgs

Jiayin Gu

DESY & IHEP

The 20th Planck Conference May 25, 2017

[arXiv:1704.02333] G. Durieux, C. Grojean, JG, K. Wang

Jiayin Gu

The leptonic future of the Higgs

The future of the Higgs at lepton colliders

Jiayin Gu

DESY & IHEP

The 20th Planck Conference May 25, 2017

[arXiv:1704.02333] G. Durieux, C. Grojean, JG, K. Wang

Introduction

- Higgs and nothing else? What next?
- An e^+e^- collider is an obvious direction to go.
- ► Higgs factory ($e^+e^- \rightarrow hZ$ at 240-250 GeV, $e^+e^- \rightarrow \nu \bar{\nu}h$ at higher energies), and many more other measurements.
- The scale of new physics Λ is large ⇒ EFT is a good description at low energy.
- A global analysis of the Higgs coupling constraints, in the EFT framework.

1) Qinhuangda

Future e^+e^- colliders

- Circular colliders
 - The Circular Electron-Positron Collider (CEPC) in China.
 - ► The Future Circular Collider (FCC-ee) at CERN.
 - 240 GeV, 350 GeV(tt), 91 GeV(Z-pole) and 160 GeV(WW).
 - Large luminosity.
 - A natural step towards a 100 TeV hadron collider.
- Linear colliders
 - The International Linear Collider (ILC) in Japan.
 - The Compact Linear Collider (CLIC) at CERN.
 - ▶ ILC: 250 GeV, 350 GeV, 500 GeV and possibly 1 TeV.
 - CLIC: 350(380) GeV, 1.4(1.5) TeV and 3 TeV.
 - Can go to higher \sqrt{s} , and also implement longitudinal beam polarizations.

Jiayin Gu

Higgs measurements

- ▶ $e^+e^- \rightarrow hZ$, cross section maximized at around 250 GeV.
- $e^+e^- \rightarrow \nu \bar{\nu} h$, cross section increases with energy.
- $e^+e^-
 ightarrow t\bar{t}h$, can be measured with $\sqrt{s}\gtrsim$ 500 GeV.
- ▶ Di-Higgs processes ($e^+e^- \rightarrow Zhh$, $e^+e^- \rightarrow \nu \bar{\nu} hh$) are left for future studies.

DESY & IHEF

κ framework vs. EFT

From the CEPC preCDR and "Physics Case for the ILC" ([arXiv:1506.05992])

Conventionally, the constraints on Higgs couplings are obtained from global fits in the so-called "κ" framework.

 $g_h^{ ext{SM}} o g_h^{ ext{SM}}(\mathbf{1}+\kappa)$.

- ► Anomalous couplings such as $hZ^{\mu\nu}Z_{\mu\nu}$ or $hZ_{\mu}\partial_{\nu}Z^{\mu\nu}$ are assumed to be zero.
- ▶ $\kappa \rightarrow \mathsf{EFT}$
 - Assuming ν ≪ Λ, leading contribution from BSM physics are well-parameterized by D6 operators.
 - Gauge invariance is built in the parameterization.
- Lots of parameters! (Is it practical to perform a global fit?)

The "12-parameter" framework in EFT

- Assume the new physics
 - is CP-even,
 - does not generate dipole interaction of fermions,
 - only modifies the diagonal entries of the Yukawa matrix,
 - has no corrections to Z-pole observables and W mass (more justified if the machine will run at Z-pole).
- Additional measurements
 - ▶ Triple gauge couplings from $e^+e^- \rightarrow WW$. (The LEP constraints will be improved at future colliders.)
 - Angular observables in $e^+e^- \rightarrow hZ$.
 - $h \rightarrow Z\gamma$ is also important.
 - Probing the top Yukawa with $e^+e^- \rightarrow t\bar{t}$? (not included)
- Only 12 combinations of operators are relevant for the measurements considered (with the inclusion of the Yukawa couplings of t, c, b, τ, μ).
- All 12 EFT parameters can be constrained reasonable well in the global fit!

Jiayin Gu

EFT basis

 We work in the Higgs basis (LHCHXSWG-INT-2015-001, A. Falkowski) with the following 12 parameters,

 $\delta \mathbf{C}_{Z} \ , \ \mathbf{C}_{ZZ} \ , \ \mathbf{C}_{Z\Box} \ , \ \mathbf{C}_{\gamma\gamma} \ , \ \mathbf{C}_{Zg} \ , \ \delta \mathbf{y}_{t} \ , \ \delta \mathbf{y}_{b} \ , \ \delta \mathbf{y}_{\tau} \ , \ \delta \mathbf{y}_{\mu} \ , \ \lambda_{Z} \ .$

- > The Higgs basis is defined in the broken electroweak phase.
 - $\blacktriangleright \ \delta c_Z \leftrightarrow h Z^{\mu} Z_{\mu}, \quad c_{ZZ} \leftrightarrow h Z^{\mu\nu} Z_{\mu\nu}, \quad c_{Z\Box} \leftrightarrow h Z_{\mu} \partial_{\nu} Z^{\mu\nu}.$
- Couplings of h to W are written in terms of couplings of h to Z and γ .
- It can be easily mapped to the following basis with D6 operators.

$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} \mathcal{H}^{2})^{2}$	$\mathcal{O}_{GG} = g_s^2 H ^2 G_{\mu\nu}^A G^{A,\mu\nu}$
$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a,\mu\nu}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$
$\mathcal{O}_{BB}=g^{\prime 2} H ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu u}$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L He_R$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$

angular observables in $e^+e^- \rightarrow hZ$

- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.
- Previous studies
 - [arXiv:1406.1361] M. Beneke, D. Boito, Y.-M. Wang
 - arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- 6 independent asymmetry observables from 3 angles

$$\mathcal{A}_{\theta_1} \;,\;\; \mathcal{A}_{\phi}^{(1)} \;,\;\; \mathcal{A}_{\phi}^{(2)} \;,\;\; \mathcal{A}_{\phi}^{(3)} \;,\;\; \mathcal{A}_{\phi}^{(4)} \;,\;\; \mathcal{A}_{c\theta_1,c\theta_2} \;.$$

 Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).

Results of the "12-parameter" fit

Assuming the following run plans (no official plan for CEPC 350 GeV run yet)

- CEPC 240 GeV(5/ab) + 350 GeV(200/fb)
- FCC-ee 240 GeV(10/ab) + 350 GeV(2.6/ab)
- ILC 250 GeV(2/ab) + 350 GeV(200/fb) + 500 GeV(4/ab)
- CLIC 350 GeV(500/fb) + 1.4 TeV(1.5/ab) + 3 TeV(2/ab)

Jiayin Gu

GDP

- Global Determinant Parameter (GDP $\equiv \sqrt[2n]{\det \sigma^2}$).
- Ratios of GDPs are basis-independent.
- ► Anti-capitalism definition: small GDP → better precision!

The importance of combining all measurements

- The results are much worse if we only include the rates of Higgs measurements alone!
- There is some overlap in the information from different measurements.
- Measurements at different energies can be very helpful.

Jiayin Gu

What's the best way to divide the total luminosity into runs with different polarization?

- ► Two polarization configurations are considered, $P(e^-, e^+) = (-0.8, +0.3)$ and (+0.8, -0.3).
- ▶ F(-+) in the range of 0.6-0.8 gives an optimal overall results.
- Runs with different polarizations probe different combinations of EFT parameters in Higgs production.

Jiayin Gu

The Higgs self-coupling at e^+e^- colliders

(current work with N. Craig, S. Di Vita, G. Durieux, C. Grojean, Z. Liu, G. Panico, M. Riembau, T. Vantalon)

- ▶ HL-LHC: $\sim O(1)$ determination. (See talks by Christophe Grojean and Thibaud Vantalon.)
- ► Ways to probe the triple Higgs coupling at e⁺e⁻ colliders
 - ▶ Linear colliders: direct measurements with $e^+e^- \rightarrow Zhh$, $e^+e^- \rightarrow \nu \bar{\nu}hh$.
 - ILC: 26.6% at 500 GeV (4 ab⁻¹) [C. F. Dürig, PhD thesis, Hamburg U. (2016)]
 - CLIC: 24%-32% at 1.4 TeV (1.5 ab⁻¹) and 12%-16% at 3 TeV (2 ab⁻¹) (Higgs Physics at CLIC [arXiv:1608.07538]).
 - Circular colliders: probe indirectly via the loop contribution in $e^+e^- \rightarrow hZ$ ([arXiv:1312.3322] M. McCullough).
 - FCC-ee 240 GeV: $|\delta \kappa_{\lambda}| \leq 28\%$ assuming all other Higgs couplings are SM-like.
 - What if other Higgs couplings are not SM-like?
- Can we obtain robust constraints on δκ_λ at circular colliders? Yes we can!
 - A global fit of 12+1 parameters. Very preliminary results!
 - ► CEPC 240 GeV (5 ab^{-1}) alone, $\delta \kappa_{\lambda}$ almost not constrained! ($|\delta \kappa_{\lambda}| \leq 700\%$)
 - ► CEPC 240 GeV (5 ab^{-1}) + 350 GeV (200 fb^{-1}), $|\delta \kappa_{\lambda}| \lesssim 108\%$.
 - ► CEPC 240 GeV (5 ab^{-1}) + 350 GeV (2 ab^{-1}), $|\delta \kappa_{\lambda}| \lesssim 45\%$.

More on the Higgs self-coupling

(current work with N. Craig, S. Di Vita, G. Durieux, C. Grojean, Z. Liu, G. Panico, M. Riembau, T. Vantalon)

Jiavin Gu

Conclusion

- ► After the discovery of Higgs at the LHC, a plausible "next step" is to build an e⁺e⁻ collider to perform Higgs precision measurements.
- $\kappa \rightarrow \text{EFT.}$
- Many parameters! Crucial to include all possible measurements (and make reasonable assumptions)!
 - ▶ $e^+e^- \rightarrow hZ$ (rate and asymmetries), $e^+e^- \rightarrow \nu \bar{\nu}h$, $e^+e^- \rightarrow t\bar{t}h$, $e^+e^- \rightarrow WW$, measurements at different energies or with different beam polarization.
- We can obtain strong and robust constraints on the coefficients of the relevant dimension-6 operators!
- Unanswered questions...
 - What's the impact of a future Z-pole run?
 - ▶ How well can aTGCs be constrained from $e^+e^- \rightarrow WW$? (Experimental studies desired.)
 - Include Higgs invisible/exotic decay?

backup slides

Jiayin Gu

DESY & IHEP

Dependence on $\delta \kappa_{\lambda}$

- ▶ WW fusion and *hZ* at 350 GeV are key to discriminate $\delta \kappa_{\lambda}$ from other parameters.
- The measurements of Higgs decay to ZZ and WW also have some discriminating power. (Note that Γ_{ZZ*} and Γ_{WW*} are not really observables...)

Impact of the Higher energy runs

Jiayin Gu

more plots...

Jiayin Gu

The future of the Higgs at lepton colliders

DESY & IHEP

$e^+e^- ightarrow u ar{ u} h$

- ▶ It is hard to separate the *WW* fusion process from $e^+e^- \rightarrow hZ, Z \rightarrow \nu\bar{\nu}$ at 240 GeV.
- It is not consistent to focus on one process and treat the other one as SM-like!
- ► For CEPC/FCC-ee 240 GeV, we analyze the combined $e^+e^- \rightarrow \nu \bar{\nu} h$ process, assuming new physics can contribute to both processes.

 $e^+e^-
ightarrow WW$

- ► $e^+e^- \rightarrow WW$ offers a great way to probe the anomalous triple gauge couplings (aTGCs, parameterized by $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$, λ_Z).
- $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$ are related to Higgs observables.
- ► CEPC with 5 ab^{-1} data at 240 GeV can produce $\sim 9 \times 10^7 e^+e^- \rightarrow WW$ events.
- With such large statistics, the aTGCs can be very well constrained ([1507.02238] Bian, Shu, Zhang), but with two potential issues:
 - Systematic uncertainties can be important!
 - If e⁺e⁻ → WW is measured more precisely than the Z-pole measurements, is it still ok to assume the fermion gauge couplings are SM-like?

The interplay between Higgs and TGC

- $\delta g_{1,Z} , \ \delta \kappa_{\gamma} \leftrightarrow \\ C_{ZZ} , \ C_{Z\Box} , \ C_{\gamma\gamma} , \ C_{Z\gamma}$
- We try different assumptions on the systematic uncertainties (in each bin with the differential distribution divided into 20 bins).
- Detailed study of e⁺e[−] → WW required to estimate the systematic uncertainties!

Jiayin Gu

TGC at ILC 500 GeV

ILC							
	uncertainty	correlation matrix					
		$\delta g_{1,Z}$	$\delta \kappa_{\gamma}$	λ_Z			
$\delta g_{1,Z}$	6.1×10^{-4}	1	0.634	0.477			
$\delta \kappa_{\gamma}$	6.4×10^{-4}		1	0.354			
λ_Z	7.2×10^{-4}			1			

- Linear colliders (large \sqrt{s}, beam polarizations) could potentially constrain the aTGCs very well.
- ► Estimated precisions of aTGCs from the $e^+e^- \rightarrow WW$ measurements at ILC assuming 500 fb⁻¹ data at 500 GeV and a beam polarization of $P(e^-, e^+) = (\pm 0.8, \pm 0.3)$. [I. Marchesini, PhD thesis, Hamburg U. (2011)]

Asymmetry observables

$$\mathcal{A}_{\theta_{1}} = \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_{1} \operatorname{sgn}(\cos(2\theta_{1})) \frac{d\sigma}{d\cos\theta_{1}},$$

$$\mathcal{A}_{\phi}^{(1)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(2)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(3)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(4)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(4)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi},$$
(1)
$$\mathcal{A}_{c\theta_{1},c\theta_{2}} = \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_{1} \operatorname{sgn}(\cos\theta_{1}) \int_{-1}^{1} d\cos\theta_{2} \operatorname{sgn}(\cos\theta_{2}) \frac{d^{2}\sigma}{d\cos\theta_{1}d\cos\theta_{2}},$$
(2)

Jiayin Gu

The future of the Higgs at lepton colliders

DESY & IHEP

The "12-parameter" framework in the Higgs basis

The relevant terms in the EFT Lagrangian are

$$\mathcal{L} \supset \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{tgc} , \qquad (3)$$

the Higgs couplings with a pair of gauge bosons

$$\begin{aligned} \mathcal{L}_{hVV} &= \frac{h}{v} \bigg[(1 + \delta c_W) \frac{g^2 v^2}{2} W^+_{\mu} W^-_{\mu} + (1 + \delta c_Z) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z_{\mu} \\ &+ c_{WW} \frac{g^2}{2} W^+_{\mu\nu} W^-_{\mu\nu} + c_{W\Box} g^2 (W^-_{\mu} \partial_{\nu} W^+_{\mu\nu} + \text{h.c.}) \\ &+ c_{gg} \frac{g_s^2}{4} G^a_{\mu\nu} G^2_{\mu\nu} + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{Z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} \\ &+ c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{Z\Box} g^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma\Box} gg' Z_{\mu} \partial_{\nu} A_{\mu\nu} \bigg] . \end{aligned}$$

The "12-parameter" framework in the Higgs basis

Not all the couplings are independent, for instance one could write the following couplings as

$$\begin{split} \delta c_{W} &= \delta c_{Z} + 4\delta m \,, \\ c_{WW} &= c_{ZZ} + 2s_{\theta_{W}}^{2} c_{Z\gamma} + s_{\theta_{W}}^{4} c_{\gamma\gamma} \,, \\ c_{W\Box} &= \frac{1}{g^{2} - g^{\prime 2}} \left[g^{2} c_{Z\Box} + g^{\prime 2} c_{ZZ} - e^{2} s_{\theta_{W}}^{2} c_{\gamma\gamma} - (g^{2} - g^{\prime 2}) s_{\theta_{W}}^{2} c_{Z\gamma} \right] \,, \\ c_{\gamma\Box} &= \frac{1}{g^{2} - g^{\prime 2}} \left[2g^{2} c_{Z\Box} + (g^{2} + g^{\prime 2}) c_{ZZ} - e^{2} c_{\gamma\gamma} - (g^{2} - g^{\prime 2}) c_{Z\gamma} \right] \,, \end{split}$$
(5)

we only consider the diagonal elements in the Yukawa matrices relevant for the measurements considered,

$$\mathcal{L}_{hff} = -\frac{h}{v} \sum_{f=t,c,b,\tau,\mu} m_f (1 + \delta y_f) \overline{f}_R f_L + \text{h.c.}$$
(6)

TGC

$$\mathcal{L}_{tgc} = igs_{\theta_{W}} A^{\mu} (W^{-\nu} W^{+\nu}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu}) + ig(1 + \delta g_{1}^{Z}) c_{\theta_{W}} Z^{\mu} (W^{-\nu} W^{+\nu}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu}) + ig \left[(1 + \delta \kappa_{Z}) c_{\theta_{W}} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta_{W}} A^{\mu\nu} \right] W^{-}_{\mu} W^{+}_{\nu} + \frac{ig}{m_{W}^{2}} (\lambda_{Z} c_{\theta_{W}} Z^{\mu\nu} + \lambda_{\gamma} s_{\theta_{W}} A^{\mu\nu}) W^{-\rho}_{\nu} W^{+}_{\rho\mu},$$
(7)

• $V_{\mu\nu} \equiv \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}$ for $V = W^{\pm}$, *Z*, *A*,. Imposing Gauge invariance one obtains $\delta \kappa_{Z} = \delta g_{1,Z} - t_{\theta_{W}}^{2} \delta \kappa_{\gamma}$ and $\lambda_{Z} = \lambda_{\gamma}$.

3 aTGCs parameters δg_{1,Z}, δκ_γ and λ_Z, 2 of them related to Higgs observables by

$$\delta g_{1,Z} = \frac{1}{2(g^2 - g'^2)} \left[-g^2(g^2 + g'^2)c_{Z\square} - g'^2(g^2 + g'^2)c_{ZZ} + e^2g'^2c_{\gamma\gamma} + g'^2(g^2 - g'^2)c_{Z\gamma} \right]$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma}\frac{e^2}{g^2 + g'^2} + c_{Z\gamma}\frac{g^2 - g'^2}{g^2 + g'^2} - c_{ZZ} \right). \tag{8}$$

Jiayin Gu

CEPC/FCC-ee Higgs rate measurements

	CEPC				FCC-ee			
	[240 GeV, 5 ab ⁻¹]		[350 GeV, 200 fb ⁻¹]		[240 GeV, 10 ab ⁻¹]		[350 GeV, 2.6 ab ⁻¹]	
production	Zh	$\nu \bar{\nu} h$	Zh	νīνh	Zh	νīνh	Zh	νūh
σ	0.50%	-	2.4%	-	0.40%	-	0.67%	-
		$\sigma \times$		$\sigma \times BR$				
$h ightarrow bar{b}$	0.21%*	0.39%◇	2.0%	2.6%	0.20%	0.28%◇	0.54%	0.71%
h ightarrow c ar c	2.5%	-	15%	26%	1.2%	-	4.1%	7.1%
$h \rightarrow gg$	1.2%	-	11%	17%	1.4%	-	3.1%	4.7%
h ightarrow au au	1.0%	-	5.3%	37%	0.7%	-	1.5%	10%
$h \rightarrow WW^*$	1.0%	-	10%	9.8%	0.9%	-	2.8%	2.7%
$h \rightarrow ZZ^*$	4.3%	-	33%	33%	3.1%	-	9.2%	9.3%
$h \rightarrow \gamma \gamma$	9.0%	-	51%	77%	3.0%	-	14%	21%
$h \rightarrow \mu \mu$	12%	-	115%	275%	13%	-	32%	76%
$h \rightarrow Z \gamma$	25%	-	144%	-	18%	-	40%	-

Table: For $e^+e^- \rightarrow \nu \bar{\nu} h$, the precisions marked with a diamond \diamond are normalized to the cross section of the inclusive channel which includes both the *WW* fusion and $e^+e^- \rightarrow hZ, Z \rightarrow \nu \bar{\nu}$, while the unmarked ones include *WW* fusion only.

ILC Higgs rate measurements

	[250 Ge\	/, 2 ab ⁻¹]	[350 Ge\	/, 200 fb ⁻¹]	[500 GeV, 4 ab ⁻¹]		[1 TeV, 1 ab ⁻¹]		[1 TeV, 2.5 ab ⁻¹]		
production	Zh	νīνh	Zh	νīνh	Zh	νīνh	tth	νūh	tth	νīνh	tth
σ	0.71%	-	2.1%	-	1.1%	-	-	-	-	-	-
					$\sigma >$	BR					
$h \rightarrow b\bar{b}$	0.42%	3.7%	1.7%	1.7%	0.64%	0.25%	9.9%	0.5%	6.0%	0.3%	3.8%
h ightarrow c ar c	2.9%	-	13%	17%	4.6%	2.2%	-	3.1%	-	2.0%	-
$h \rightarrow gg$	2.5%	-	9.4%	11%	3.9%	1.4%	-	2.3%	-	1.4%	-
$h \rightarrow \tau \tau$	1.1%	-	4.5%	24%	1.9%	3.2%	-	1.6%	-	1.0%	-
$h \rightarrow WW^*$	2.3%	-	8.7%	6.4%	3.3%	0.85%	-	3.1%	-	2.0%	-
$h \rightarrow ZZ^*$	6.7%	-	28%	22%	8.8%	2.9%	-	4.1%	-	2.6%	-
$h \rightarrow \gamma \gamma$	12%	-	44%	50%	12%	6.7%	-	8.5%	-	5.4%	-
$h \rightarrow \mu \mu$	25%	-	98%	180%	31%	25%	-	31%	-	20%	-
$h \rightarrow Z \gamma$	34%	-	145%	-	49%	-	-	-	-	-	-

ILC

Jiayin Gu

DESY & IHEP

CLIC Higgs rate measurements

CLIC									
	[350 GeV	′, 500 fb ⁻¹]	[1.4 TeV	$, 1.5 \mathrm{ab}^{-1}]$	[3 TeV, 2 ab ⁻¹]				
production	Zh	νīνh	νīνh	tīh	νīνh				
σ	1.6%	-	-	-	-				
			$\sigma \times \mathbf{I}$	3R					
$h ightarrow bar{b}$	0.84%	1.9%	0.4%	8.4%	0.3%				
h ightarrow c ar c	10.3%	14.3%	6.1%	-	6.9%				
h ightarrow gg	4.5%	5.7%	5.0%	-	4.3%				
$h \rightarrow \tau \tau$	6.2%	-	4.2%	-	4.4%				
$h \rightarrow WW^*$	5.1%	-	1.0%	-	0.7%				
$h \rightarrow ZZ^*$	-	-	5.6%	-	3.9%				
$h \rightarrow \gamma \gamma$	-	-	15%	-	10%				
$h \rightarrow \mu \mu$	-	-	38%	-	25%				
$h \rightarrow Z\gamma$	-	-	42%	-	30%				

~ ...

Table: We also include the estimations for $\sigma(hZ) \times BR(h \to b\bar{b})$ at high energies in [arXiv:1701.04804] (Ellis et al.), which are 3.3% (6.8%) at 1.4 TeV (3 TeV). For simplicity, the measurements of ZZ fusion $(e^+e^- \to e^+e^-h)$ are not included in our analysis.