

Planck 2017

A Systematic Analysis of Semi-Annihilation

Yi Cai & Andrew Spray, 1611.09360

기조과악언

Institute for Basic Science

위

Outline

- 1. Semi-Annihilation
- 2. Effective Operators
- 3. Phenomenology & Constraints
- 4. Conclusions

Thermal Dark Matter

- Bounds on thermal DM starting to get quite strong
- * Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?

Thermal Dark Matter

- Bounds on thermal DM starting to get quite strong
- * Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?
- Very basic assumption:
 DM stabilised by Z₂ symmetry

- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds

- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds

- * Not Generic! (D'Eramo & Thaler, 2010)
- * Non- Z_2 syms **>>** Semi-Annihilation:
 - Non-decay processes
 - Odd number of external dark states
- Irrelevant for colliders & DD

Leads to these strong bounds

Irrelevant for colliders & DD

- SA relaxes bounds from terrestrial searches
- SA affects indirect (cosmic ray) searches
 - Different kinematics $E = \frac{(m_{i_1} + m_{i_2})^2 + m_V^2 m_f^2}{2(m_{i_1} + m_{i_2})}$
 - Dark sector cascades (from unstable dark states)

A number of studies so far Bélanger et al, 1202.2962; D'Eramo et al, 1210.7817; Ko & Tang, 1402.6449; Aoki & Toma, 1405.5870; Berger et al, 1401.2246; Fonseca et al, 1507.08295; Cai & Spray, 1509.08481

Ψ

But based on particular models; no general study so far

SM

SM

* Two classes of 2 \rightarrow 2 SA, depending on SM final state

Gauge singlet

 Minimal theories: dark sectors (can be) all DM

* Two classes of 2 \rightarrow 2 SA, depending on SM final state

 Minimal theories: dark sectors (can be) all DM Gauge charged

 Must be light charged unstable dark states

* Two classes of 2 \rightarrow 2 SA, depending on SM final state

Gauge charged

- Minimal theories: dark sectors (can be) all DM
- Must be light charged unstable dark states
- Call states with dark & SM symmetries Dark Partners
- DM-DM initial states: dark partners conjugate to SM

Effective Operators

Exploring Model Space: EFTs

- Standard tool for model-independent studies
 - Two sectors: dark and visible
 - Integrate out mediators to generate EFT
- Easy to exhaust possibilities
- Direct connection to initial & final states
- Very applicable for Semi-annihilation:
 - Mediators must be more massive than DM
 - Freeze out & indirect detection non-relativistic so EFT valid

Assumptions

- 1. DM is gauge singlet complex scalar or fermion, charged under exact global symmetry $D \neq Z_2$
- 2. Consider 2 \rightarrow 2 processes with 3 dark sector fields i.e. operators with 4 fields after EWSB
- 3. Allow dark partners, at most 1 per operator
- 4. Allow multi-component dark matter
- 5. Consider all possible terms to dimension 6& leading terms at dimension 7

General Results

- See paper/back-up slides for operator lists
- Small number of operators; e.g. for unique DM,

	DM-only	Scalar DP	Fermion DP	
Scalar DM	1	9	6	
Fermion DM	1 x gens.	19 x gens.	28 x gens.	

- DM-only operators involve 5 fields before EWSB
- * No operators leading to γ -ray line signatures for < 3 DM
- Lowest-dimension operators involve dark partners

General Results

- See paper/back-up slides for operator lists
- Small number of operators; e.g. for unique DM,

	DM-only	
Scalar DM	1	$\phi^3 H^\dagger H$
Fermion DM	1 x gens.	$ar{\chi}^c P_L \chi (L^\dagger \tilde{H}) \chi$

- DM-only operators involve 5 fields before EWSB
- Lowest-dimension operators involve dark partners
- * No operators leading to γ -ray line signatures for < 3 DM

Higgs Portals

- Operators for scalar/fermion DM at dimension 5+/6+
- Compare this to the always-allowed Higgs portals:

 $\mathcal{O}_{\phi H} = \lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H, \qquad \mathcal{O}_{\chi H} = \frac{c_{\chi H}}{\Lambda} \bar{\chi} \gamma^{5} \chi H^{\dagger} H$

- * If SA is to dominate, these must be suppressed
 - SA (Portal) generated at tree-level (one loop)
 - UV scale $\approx 5 10$ TeV
- Constrains UV particle content:
 - No gauge- and D-singlet scalars
 - No EW doublets in conjugate D-rep, same spin as DM

Dark Partner Decay

- Dark partners cannot decay in minimal theory:
 - * $\Psi \to \phi \phi + SM$ kinematically forbidden
 - * Need new coupling $\Psi \to \phi^{\dagger} + SM$
- Additional model dependence
 - * Minimal allowed by symmetries? Or similar to SA operator?
 - * Fermion DM particularly problematic: 2-body decays forbidden
- * Lower bound on decay rate from BBN $\tau \lesssim 0.05 \,\mathrm{s}, \qquad \therefore c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{DP}}\right)^{D_{dec}-4}$

Dark Partner Decay

- Dark partners cannot decay in minimal theory:
 - * $\Psi \to \phi \phi + SM$ kinematically forbidden
 - * Need new coupling $\Psi \to \phi^{\dagger} + SM$
- Additional model dependence
 - * Minimal allowed by symmetries? Or similar to SA operator?
 - * Fermion DM particularly problematic: 2-body decays forbidden
- * Lower bound on decay rate from BBN $\tau \lesssim 0.05 \,\mathrm{s}, \qquad \therefore c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{DP}}\right)^{D_{dec}-4}$

Impact of Decay Operators

- Prompt decays contribute to cosmic ray signals
 - Function of dark partner mass
 - Depends on decay mode

- * Lead to upper bounds on Wilson coefficient:
 - DM annihilation through t-channel Dark partner
 - DM-Dark partner coannihilation
 - Enhanced contributions to direct detection
 - Possible DM-Dark partner mixing
- * General bound $c_{dec} \leq 0.1 0.01$

Phenomenology & Constraints

- * Derive limits from γ -ray, positron & neutrino telescopes
- Additional assumptions:
 - DM is single component
 - Fix dark partner-DM mass ratio to 1.5
- Set limits on EW broken phase operators
 - Direct connection to amplitudes
 - * More easily applicable to general models
- Only time & space to show a small selection of results

SA to Neutrinos

- * Top: Bounds on dim-6 ops $\frac{1}{6\Lambda^2} \chi^3 \nu \quad \& \quad \frac{1}{2\Lambda^2} (\chi \chi) (\bar{\nu} \psi)$
- Bottom: dim-5 ops

$$\frac{1}{2\Lambda}\,\phi^2\left(\bar\nu\psi\right)$$

- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: as marked (current)
 - Dashed: CTA (projected)
- Dots: relic density from SA alone

18/2

- Neutrino spectra for same operators as on last slide
- Varied DM DP mass ratio
- Solid lines:
 - * SA final state neutrinos
 - Nearly monochromatic
- Dashed lines
 - Dark partner decay neutrinos
 - Broad spectrum; more so for fermion DM due to 3-body decay
 - More important for heavier DPs

Leptonic Dark Partner Limits

- * Top: bounds on d = 5 ops $\frac{1}{2\Lambda} \phi^2 \, \bar{f} \psi$
- * Bottom: bounds on d = 6 ops $\frac{1}{2\Lambda^2} (\chi \chi) \, \bar{f} \psi$
- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: AMS (current)
 - Dashed: CMB (current)
- Exclude RD params for electron channel and 10 ≤ m ≤ 100 GeV

Conclusions

- Semi-Annihilation is a generic feature of dark matter
- * Constructed all SA operators up to dimension 6
- Model space for DM-only theories is small
- Dark partners lead to more varied phenomenology at cost of dependence on dark partner decay modes
- Derived limits & prospects from cosmic ray searches;
 close to relic cross section in some fermionic channels
- Many questions remain, e.g. UV completions

- Semi-Annihilation is a generic feature of dark matter
- * Constructed all SA operators up to dimension 6
- Model space for DM-only theories is small
- Dark partners lead to more varied phenomenology at cost of dependence on dark partner decay modes
- Derived limits & prospects from cosmic ray searches;
 close to relic cross section in some fermionic channels
- Many questions remain, e.g. UV completions

Thank You!

Back-Up Slides

Dark Matter Only

Write down all operators consistent with assumptions

Scalar

Operator	Definition
\mathcal{O}_{5U}^{H}	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
${\cal O}^Z_{7U}$	$(x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) \left(iH^\dagger \overleftrightarrow{D_\mu} H \right)$
\mathcal{O}_{7U}^{H}	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^\dagger}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^{\dagger}\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij} \bar{\chi}^c_i \chi_j \phi H^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij}ar{\chi}^c_i\gamma^5\chi_j\phiH^\dagger H$
$\check{\mathcal{O}}_{6U}^{\check{B}}$	$a^{ij} \bar{\chi}^c_i \sigma^{\mu u} \chi_j \phi \breve{B}_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{ZA}	$\left s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right) \right $
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$\left s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \left(\phi \overleftrightarrow{\partial_\mu} (H^\dagger H) \right) \right $

Operator	Definition	
\mathcal{O}_{7U}^{LL}	$\left(s^{ijk} + y^{ijk} + x^{ikj}\right)\left(\eta_i\eta_j\right)\left(\left(L^{\dagger}\tilde{H}\right)\bar{\xi}_k^{\dagger}\right)$	
${\cal O}_{7U}^{LR}$	$\left(y^{ijk} + x^{ikj}\right) (\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger} \right)$	

Small number of operators;
 Only TWO for unique DM

Fermion

- * Only neutral SM: h, Z, γ , ν
- * (Almost) all lead to 2 \rightarrow 3 SA
- Very simple model space

Dark Partner

Operator	Definition	ω/ψ	
\mathcal{O}_{4U}^H	$s^{ij} \phi_i \phi_j \left(H^\dagger \omega ight)$	$(1, 2, \frac{1}{2})$	
$\mathcal{O}_{5U}^{ H _1^2}$	$s^{ij} \phi_i \phi_j \omega H^\dagger H$	(1, 1, 0)	
$\mathcal{O}_{5U}^{ H _3^2}$	$s^{ij} \phi_i \phi_j \omega^a H^\dagger \sigma^a H$	(1, 3, 0)	
$\mathcal{O}_{5U}^{H^2}$	$s^{ij} \phi_i \phi_j \omega^a H^\dagger \sigma^a \tilde{H}$	(1, 3, 1)	-
\mathcal{O}_{6U}^{Hd}	$s^{ij} \phi_i \phi_j \left(H^{\dagger} \omega \right) (H^{\dagger} H)$	$(1, 2, \frac{1}{2})$	
\mathcal{O}_{6U}^{Hq}	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} \tilde{H}_K^{\dagger}$	$(1, 4, \frac{1}{2})$	
$\mathcal{O}_{6U}^{H^3}$	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} H_K^{\dagger}$	$(1, 4, \frac{3}{2})$	
${\cal O}_{6U}^{H\partial^2}$	$s^{ij} \left(\partial_{\mu}\phi_{i}\right) \left(\partial^{\mu}\phi_{j}\right) \left(H^{\dagger}\omega\right)$	$(1, 2, \frac{1}{2})$	
$\mathcal{O}_{6U}^{H\partial D}$	$a^{ij} \phi_i(\partial_\mu \phi_j) \left(H^\dagger \overleftarrow{D_\mu} \omega \right)$	$(1, 2, \frac{1}{2})$	
$\mathcal{O}_{6U}^{HD^2}$	$s^{ij} \phi_i \phi_j \left(D^\mu H \right)^\dagger \left(D_\mu \omega \right)$	$(1, 2, \frac{1}{2})$	
${\cal O}_{5U}^{ar{f}\psi}$	$s^{ij}\phi_i\phi_jar f\zeta$	$(\bar{R}_{ar{f}},1,-Y_{ar{f}})$	
$\mathcal{O}_{5U}^{F\psi}$	$s^{ij} \phi_i \phi_j F^\dagger ar v^\dagger$	$(R_F, 2, Y_F)$	
${\cal O}_{6U}^{ar{f}H\psi}$	$s^{ij} \phi_i \phi_j \bar{f}(\tilde{H}^{\dagger} \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} - \frac{1}{2})$	
$\mathcal{O}_{6U}^{ar{f}H^\dagger\psi}$	$s^{ij} \phi_i \phi_j ar{f}(H^\dagger \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} + \frac{1}{2})$	1
$\mathcal{O}_{6U}^{FH\psi_1}$	$s^{ij} \phi_i \phi_j (F^\dagger H) \bar{v}^\dagger$	$(R_F, 1, Y_F - \frac{1}{2})$	
$\mathcal{O}_{6U}^{FH^\dagger\psi_1}$	$s^{ij} \phi_i \phi_j (F^\dagger \tilde{H}) \bar{v}^\dagger$	$(R_F, 1, Y_F + \frac{1}{2})$	
$\mathcal{O}_{6U}^{FH\psi_3}$	$s^{ij}\phi_i\phi_j \left(F^{\dagger}\sigma^a H\right) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F - \frac{1}{2})$	
$\mathcal{O}_{6U}^{FH^\dagger\psi_3}$	$s^{ij} \phi_i \phi_j (F^\dagger \sigma^a \tilde{H}) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F + \frac{1}{2})$	
$\mathcal{O}_{6U}^{f\partial}$	$a^{ij}\phi_i(\partial_\mu\phi_j)ar{f}\sigma^\muar{v}^\dagger$	$(ar{R}_{ar{f}},1,-Y_{ar{f}})$	
$\mathcal{O}_{6U}^{F\partial}$	$a^{ij}\phi_i(\partial_\mu\phi_j)F^\daggerar\zeta^\mu\eta$	$(R_F,2,Y_F)$	

- Possibilities vastly increased
- Scalar DM plus
 - Scalar dark partner (top)
 - Fermion dark partner (bottom)
 - One renormalisable operator
- Multiple d = 5 operators
- Situation for fermion and scalar-fermion DM similar
- * All SM final states possible
 - * γ/g require multi-component DM