Higgs Results and Searches for More Scalars at CMS

awek Tkacz

FERMILAB

CMS

Scalars 2023

An opportunity to discuss various aspects of scalar particles.

13-16 September 2023 Warsaw (Ochota Campus)

scalars2023.fuw.edu.pl

LHC in Run 2,3 (2015-2023) Highest Energy and Luminosity

Data included from 2015-06-03 08:41 to 2023-07-16 20:28 UTC

CMS Detector

What has CMS seen in the pp Run 2,3 collisions at 13(.6)TeV?

Part 1: Precision Higgs results Part 2: Searches for BSM Higgs Part 3: Searches for other scalars

Higgs Results 10+ y after Discovery

Higgs Bosons — H^0 and H^{\pm} , Searches for

The July 2012 news about Higgs searches is described in the addendum to the Higgs review in the data listings, but is not reflected here.

The limits for H_1^0 and A^0 refer to the m_h^{\max} benchmark scenario for the supersymmetric parameters.

 \textit{H}^{0} Mass m > 115.5 and none 127–600 GeV, CL = 95%

Page 4

 H_1^0 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 92.8 GeV, CL = 95%

HTTP://PDG.LBL.GOV VII. Addendum Created: 6/18/2012 15:05

2012

Updated July 12, 2012.

On July 4, 2012, the ATLAS and CMS collaborations simultaneously announced observation of a new particle produced in pp collision data at high energies [363–366]. The data samples used correspond to between 4.6 and 5.1 fb⁻¹ of collision data collected at $\sqrt{s} = 7$ TeV in 2011, and between 5.3 and 5.9 fb⁻¹ of collisions collected at $\sqrt{s} = 8$ TeV in 2012. The observed decay modes indicate that the new particle is a boson. The evidence is strong that the new particle decays to $\gamma\gamma$ and ZZ with rates consistent with those predicted for the Standard Model (SM) Higgs boson. There are indications that the new particle might also decay to W^+W^- , and decays to $b\bar{b}$ and $\tau^+\tau^-$ are being sought as well.

was H⁰

J = 0

2023

 $\begin{array}{ll} \mbox{Mass} \ m = 125.25 \pm 0.17 \ \mbox{GeV} & (\mbox{S} = 1.5) \\ \mbox{Full width} \ \Gamma = 3.2^{+2.4}_{-1.7} \ \mbox{MeV} & (\mbox{assumes equal} \\ \mbox{on-shell and off-shell effective couplings}) \end{array}$

H Signal Strengths in Different Channels

Combined Final States = 1.03 ± 0.04 $WW^* = 1.00 \pm 0.08$ $ZZ^* = 1.02 \pm 0.08$ $\gamma \gamma = 1.10 \pm 0.07$ $c\bar{c}$ Final State = 8 ± 22 (S = 1.9) $b\bar{b} = 0.99 \pm 0.12$ $\mu^+ \mu^- = 1.21 \pm 0.35$ $\tau^+ \tau^- = 0.91 \pm 0.09$ $\gamma^* \gamma$ Final State = 1.5 ± 0.5 Fermion coupling (κ_F) = 0.95 ± 0.05 Gauge boson coupling (κ_V) = 1.035 ± 0.031 $t\bar{t}H$ Production = 1.10 ± 0.18 tH production = 6 ± 4 H Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = 56.9 ± 3.4 pb

Higgs Results 11 y after Discovery

H J=0	н°		J = 0		202	3
Nas H ⁰	H DECAY MO	DES	Fraction (Γ_i/Γ_j)) Confiden	ce level	р (MeV/c)
Mass $m = 125.25 \pm 0.17$ GeV (S = 1.5) Full width $\Gamma = 3.2^{+2.4}_{-1.7}$ MeV (assumes equal on-shell and off-shell effective couplings)	₩₩* ZZ* Ŷ <u>Ŷ</u> bb		(25.7 ± 2.5) (2.80 ± 0.30 ($2.50 \pm 0.20)$ (53 ± 8) %)) %)) × 10 ⁻³) %		_ _ 62625 _
H Signal Strengths in Different Channels Combined Final States = 1.03 ± 0.04	$e^+e^-\ \mu^+\mu^-$		< 3.6 (2.6 ±1.3	$\times 10^{-4}$) $\times 10^{-4}$	95%	62625 62625
$W W^* = 1.00 \pm 0.08$ $Z Z^* = 1.02 \pm 0.08$	$ au^+ au^-$ Z γ		($6.0 \ +0.8 \ -0.7$ ($3.2 \ \pm 1.5$) %) × 10 ⁻³		62600 29431
$\gamma \gamma = 1.10 \pm 0.07$ $c \overline{c}$ Final State = 8 ± 22 (S = 1.9) $b \overline{b} = 0.99 \pm 0.12$	$Z \rho(770)$ $Z \phi(1020)$		< 1.21 < 3.6	$%$ $\times 10^{-3}$	95% 95%	29423 29417
$\mu^+\mu^- = 1.21 \pm 0.35$ $\tau^+ au^- = 0.91 \pm 0.09$	$J/\psi \gamma \ J/\psi J/\psi \ \psi(2S) \gamma$		< 3.5 < 1.8 < 2.0	$\times 10^{-4}$ $\times 10^{-3}$ $\times 10^{-3}$	95% 95% 95%	62587 62548 62571
$\gamma^*\gamma$ Final State = 1.5 \pm 0.5 Fermion coupling (κ_F) = 0.95 \pm 0.05	$arphi(1S)\gamma \ arphi(2S)\gamma \ $		< 4.9 < 5.9	$\times 10^{-4}$ $\times 10^{-4}$	95% 95%	62268 62224
Gauge boson coupling $(\kappa_V) = 1.035 \pm 0.031$ $t \overline{t} H$ Production $= 1.10 \pm 0.18$	$\Upsilon(3S)\gamma$ $\Upsilon(nS)\Upsilon(mS)$)	< 5.7 < 1.4	$\times 10^{-4}$ $\times 10^{-3}$	95% 95%	62197 —
H Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = 56.9 + 3.4 pb	$ ho(70)\gamma$ $\phi(1020)\gamma$	IF	< 8.8 < 4.8 < 6.1	$\times 10^{-4}$ × 10 ⁻⁴ × 10 ⁻⁵	95% 95% 95%	62623 62621 62625
	e au μau	LF LF	< 2.2 < 1.5	$ \times \frac{10^{-3}}{\times 10^{-3}} $	95% 95%	62612 62612
	invisible γ invisible		< 13 < 2.9	% %	95% 95%	-

Higgs Program

Nature volume 607, pages 60–68 (2022) **MARKING 10 YEARS OF DISCOVERY**

COURIER

THE

HIGGS

ENIGMA

Many precision Higgs measurements enabled with large Run 2 & 3 data sets already collected

- Mass and couplings
- Couplings to vector bosons, quarks and leptons and ttH (H \rightarrow bb/ $\tau\tau/\gamma\gamma$)
- Differential cross sections
- Rare decays $H \rightarrow Z\gamma$ or not allowed in SM: LFV H $\rightarrow \tau e/\mu e/\tau \mu$
- HH resonance studies (bb + bb/ $\gamma\gamma/\tau\tau$) •
- Decays to non-SM particles: $H \rightarrow invisible$ or light pseudo- or scalarparticles
- **Experimental precision** confirms Higgs role in the SSB in the SM lars 2023

Higgs Mass Peaks in Run 2

Nature607(2022)60-68

8

Higgs Measurements from Run 2

Higgs Mass Measurement $H \rightarrow ZZ \rightarrow 4I$ **CMS PAS HIG-21-019**

New !

Only shown yesterday at HH

- New tracker alignment and muon reconstruction with beam spot constraint
- Event categories based on 4I mass uncertainty

Higgs Measurements from Run 2

Signal Strength μ in good agreement with the SM **production** modes and **decays** channels

Scalars 2023

Higgs Couplings Run 2 and Beyond

Nature 607 (2022) 60-68

Production and decay measurements used to determine the Higgs couplings to fermions and bosons

13/09/23 Slawek Tkaczyk

Higgs Couplings Run 2 Results

Nature 607 (2022) 60-68

CMS/

Higgs Coupling to Top Quarks

ttH - a direct probe to Top Yukawa λ_t cplg while tH - a unique channel to study the relative sign of couplings while

Higgs Cross Sections

<u>JHEP08(2023)040</u>

Excellent agreement with the SM

Higgs Differential Cross Sections

Opportunities to study : Dynamics of H production models, constrains of couplings, additional jet structure

Scalars 2023

Higgs Decay H \rightarrow Z γ

JHEP05(2023)233

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-29 23:54:15.530176 GMT Run / Event / LS: 321961 / 626392822 / 338

Higgs Decay $H \rightarrow Z\gamma$

JHEP05(2023)233

- Similar to $H \rightarrow \gamma \gamma$ already reconstructed but rate reduction in $Z \rightarrow \ell \ell$ channel
 - Sensitivity to BSM effects at the decay
 - First example of combined ATLAS and CMS evidence of H \rightarrow Z γ from previously published results

Combined CMS and ATLAS first evidence for $H \rightarrow Z\gamma$ decay with observed significance: **3.4** σ (expected **1.6** σ)

Signal strength: μ =2.2 ±0.7 1.9 σ compatibility with the SM prediction

LFV Higgs Decays Run 2

HIG-22-002

arxiv:2305.18106

Production of X in the mass range 110-160GeV

@M_H=125GeV: Observed(expected) Upper Limit on BF of H→ eµ: 4.4(4.7) x 10⁻⁵ @95% CL Yukawa Coupling: $V(|Y_{\mu\epsilon}|^2 + |Y_{e\mu}|^2) < 1.9(2.0) \times 10^{-4}$ @95% CL

LFV Higgs Decays Run 2

HIG-22-002

arxiv:2305.18106

Production of X in the mass range 110-160GeV

Select one eµ OS pair b-jet veto VBF and ggF production Divided into subsamples

@M_H=146GeV:

Observed(expected) Upper Limit on x-sec of $X \rightarrow e\mu$: 6.0(2.1) fb⁻¹@95% CL

Excess observed: Global (local)significance: 2.8(3.8)σ

13/09/23 Slawek Tkaczyk

Scalars 2023

HH Production Limits

Nature 607 (2022) 60-68

HH Production Limits Run 2

Nature 607 (2022) 60-68

Limits on Higgs boson self-interaction κ_λ and quartic coupling κ_{2V} (VVHH)

SM values assumed for H modifier couplings to t and V

• Results in agreement with the SM

• Strong limits, below 1%, on LVF of $H \rightarrow \mu e$, $\mu \tau$, τe

- Higgs may play a role as a portal to new physics theories ; H→invisible observed (expected) limit of 0.15(0.08) @95% CL
- HH measurements @HL-LHC

Part 2

• Searches for BSM decays of the H

 The exotic decay channels may include the Higgs boson decaying to a pair of light pseudoscalar particles, subsequently decaying to pairs of SM particles.

• Searches for other spin-0 particles

Search for Light H $\rightarrow \gamma \gamma$

CMS-PAS-HIG-020-002

Search for additional light $H \rightarrow \gamma \gamma$ decays below H(125)

Search for neutral higgs ϕ

Neutral higgs ϕ in ggF or in association with b-quark(s)

Limits set [60 - 3500 GeV] ranging from 10pb to 0.3fb e.g. two excesses in gg ϕ at 0.1 and 1.2 TeV with ~3 σ

In MSSM scenarios M_h¹²⁵ & M_{h, EFT}¹²⁵ additional Higgs bosons with masses below 350 GeV excluded

JHEP07(2023)073

Search for VV,VH All-Hadronic Resonance

CMS PAS B2G-20-009 Phys. Let. B 844 (2023) 137813

Search for VV,VH All-Hadronic Resonance

CMS PAS B2G-20-009

Models: spin-2 Gravitons, and spin-0 radions

Phys. Let. B 844 (2023) 137813

13/09/23 Slawek Tkaczyk

Search for charged Higgs

CMS HIG-20-017

GM particles as a resolution of tensions in EWK fits with new CDF m_W e.g.Ellis et al. arXiv:2204.05260 - list tree-level single field extensions that include EFT dim-6 operators providing a better fit than SM alone among them 2.9TeV Ξ - triplet

Exclusion of model parameter S_H for masses 200-1500GeV: 0.2-0.35@95%CL

SUMMARY

- Crucial precision and fundamental Higgs measurements available
 - Exciting info about properties, exotic decay modes
 - Agreement with the SM expectations and EWSB
- No hints of additional spin-0 particles so far
- Additional results soon to come with Run2&3 datasets
 - -Clarification of the mild excesses observed in the data
 - Improved precision with increased impact on the Higgs boson physics

Additional Slides

LFV Higgs Decays Run 2

Phys. Rev. D 104 (2021) 032013

No excess observed in Run 2 data Scalars 2023

Search for $H \rightarrow Za \rightarrow \ell \ell \gamma \gamma$

CMS-PAS-HIG-22-003

1<m(a)<30 GeV mass range considered with resolved $\gamma\gamma$

Data driven methods to estimate Backgrounds BDT classifier optimized to discriminate signal

Data compatible with background-only-hypothesis

```
Limits set on \sigma(H) \times Br(H \rightarrow Za \rightarrow \ell \ell \gamma \gamma)
```

Limits set on the Axion-Like-Particle coupling parameter to H,Z, ALP

Search for Heavy Higgs to WW decays CMS-PAS-HIG-020-016

ggF and VBF production considered Fully leptonic final states (ee, μμ, eμ)

New analysis techniques implemented Various width hypothesis considered

Heavy higgs excluded up to 2100TeV @95% CL depending on the production model

Upward fluctuation observed in data over the expected background

Signal hypothesis at mass of **650** GeV with highest global significance of 2.6σ for VBF production only

Additional exclusion limits obtained on MSSM and 2HDM scenarios

Search for $X \rightarrow H/Y(bb)H(\gamma\gamma)$

Search for X→H(WW)H(bb)

Resonant $X \rightarrow HH \rightarrow WWbb$ in leptonic and hadronic decays Motivated by the Extended Higgs and Warped ED models DNN to classify events according to categories

Limits set on HH production for spin-0 (**Radion**) and spin-2 (**Graviton**) in the mass range 250-900 GeV Compared to warped Extra Dimension Models with warp parameters Λ and κ Data compatible with background-only-hypothesis

Search for VV,VH All-Hadronic Resonance

CMS PAS B2G-20-009

Phys. Let. B 844 (2023) 137813

Models: Gravitons, heavy spin-1 bosons (W', Z') and spin-0 radions

138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) 10 **F** CMS [dd] (VV ↔ Observed CMS (VV) (pb] Observed Expected ± 1 std. deviation Expected \pm 1 std. deviation Expected \pm 2 std. deviation -----Expected ± 2 std. deviation $\sigma_{\mathrm{TH}} \mathbf{x} \ B(\mathbf{G}_{\mathrm{bulk}}
ightarrow \mathbf{VV}), \ \mathbf{\widetilde{k}} = \mathbf{0.5}$ B(ggF G bulk , 10 138 fb⁻¹ (13 TeV) $\sigma_{\text{TH}} \mathbf{x} \ B$ (Rad \rightarrow VV) 10^{-1} CMS [qd] (HV+VV Rad Expected ± 1 std. deviation Expected ± 2 std. deviation 10⁻² $\sigma_{***} \times B(V' \rightarrow VV+VH) HVT_{*}$ $\sigma \ge B(ggF)$ 10⁻² 10 Spin-0 Spin-2 Ś 10 10⁻³ , 7)₈ 10⁻¹ × 10⁻³ ь × ь 10-4 10 10^{-4} 10 2 3 35 4 4.5 5 5.5 M_v [TeV] 2.5 3 3.5 4.5 5 5.5 6 $\rm M_{\rm G_{\rm bulk}}\,[\rm TeV]$ 10^{-5} 138 fb⁻¹ (13 TeV) 4.5 5 5.5 1.5 3.5 4 CMS [dd] (HV+VV M_{Rad} [TeV] Expected ± 1 std. deviation Limit on G_{bulk} mass Expected + 2 std. deviation $x B(V' \rightarrow VV+VH) HVT_{a}, c_{u} = 1$ Limits on Radion mass: $B(V' \rightarrow VV + VH) HVT_{a}, c_{ii} = 3$ G_{bulk} 1.4 TeV at 95%CL ↑ Rad: 2.7 TeV at 95%CL **>** 10[−] ∧ ∃8(VBF) 10-3. Mild excesses observed @2.1&2.9TeV with 3.6σ(2.3σ) local Limits on the Heavy Vector Triplet "B"-type model: V': 4.8 TeV at 95%CL × b ₁₀-∕ HVT C-type: Upper Limit on (global) significance x-section and branching ratio at 0.1fb 10 13/09/23 Slawek Tkaczyk 1.5 2 2.5 3 3.5 4.5 5 5.5 40

M_v, [TeV]