Models of broken SUSY with
 Constrained Superfields

Niccolò Cribiori
University of Padova

20th Planck Conference, Warsaw
25th May 2017

Introduction

Motivations

- SUSY has to be broken.
- When broken, SUSY can be non-linearly realized.
- Constrained Superfields: superfield tool to study models of broken SUSY.

Applications

- Low energy effective theories, with broken SUSY.
- Mass splitting in the spectrum
- Massless Goldstino + light degrees of freedom (d.o.f.)
- fermionic d.o.f. \neq bosonic d.o.f.
- Supergravity and Inflationary models.

The simplest model [Rocek '78; Casalbuoni, De Curtis, Dominici, Feruglio, Gatto '89; Seiberg, Komargodski '00]

- Consider one scalar and one fermion organized in a chiral superfield

$$
X=S+\sqrt{2} \theta^{\alpha} G_{\alpha}+\theta^{2} F
$$

- If SUSY is broken by $\langle F\rangle \sim f \neq 0, G_{\alpha}$ is the goldstino

$$
\delta G_{\alpha}=-f \epsilon_{\alpha}+\cdots
$$

- The simplest Lagrangian is

$$
\begin{aligned}
\mathcal{L} & =\int d^{4} \theta X \bar{X}+f\left(\int d^{2} \theta X+\text { c.c. }\right) \\
& =-\partial_{m} S \partial^{m} \bar{S}+i \partial_{m} \bar{G} \bar{\sigma}^{m} G-f^{2}
\end{aligned}
$$

The simplest model [Rocek '78; Casalbuoni, De Curtis, Dominici, Feruglio, Gatto '89; Seiberg, Komargodski '09]

- The scalar S can be (very) heavy

$$
\mathcal{L}-\frac{1}{\Lambda^{2}} \int d^{4} \theta X^{2} \bar{X}^{2} \quad \Longrightarrow \quad m_{s}^{2} \sim \frac{f^{2}}{\Lambda^{2}}
$$

- At energies $E \ll \frac{f}{\Lambda}$ we can integrate out S and get an effective theory.
- This procedure is equivalent to imposing on \mathcal{L} the constraint

$$
X^{2}=0 \quad \Longleftrightarrow \quad X=\frac{G^{2}}{2 F}+\sqrt{2} \theta^{\alpha} G_{\alpha}+\theta^{2} F
$$

- In general imposing constraints on superfields eliminates some of their components.

The general constraint [Dall'Agata, Dudas, Farakos '16]

- We saw the SUSY breaking sector. How to describe matter?
- Given any matter superfield $Q=q+\sqrt{2} \theta^{\alpha} \chi_{\alpha}+\cdots$,

$$
X \bar{X} Q=0 \quad\left(X^{2}=0\right)
$$

eliminates the lowest component q and expresses it as a function of goldstino G_{α}

$$
q=\frac{G \chi}{2 F}+\cdots
$$

- It reproduces all known constraints and generates new ones.
- It can be used as a systematic procedure to reproduce any desired spectrum in the low energy (goldstino + matter).

A model with SUGRA [NC, Dall'Agata, Farakos, Porrati '16]

- Consider Old Minimal SUGRA multiplet $\left\{e_{\mu}{ }^{a}, \psi_{\mu}, M, b_{a}\right\}$.
- The auxiliary fields M, b_{a} are lowest components of superfields R, B_{a}. They can be eliminated by imposing

$$
X \bar{X} R=0, \quad X \bar{X} B_{a}=0
$$

- Gravity auxiliary fields generate the (negative) gravity contribution to the scalar potential. If we eliminate them the scalar potential will be positive definite

$$
V=|f|^{2} \quad \text { de Sitter vacuum }
$$

- The setup is well suited for studying Inflation.
- The procedure is equivalent to the CCWZ procedure [Delacretaz, Gorbenko, Senatore '16].

Is $X^{2}=0$ general? [NC, Dall'Agata, Farakos '17]

- F-term breaking: parametrize $\Phi=X+\cdots$

$$
\begin{aligned}
\mathcal{L} & =\int d^{4} \theta \Phi \bar{\Phi}+\left(f \int d^{2} \theta \Phi+\text { c.c. }\right) \\
& =\int d^{4} \theta(X \bar{X}+\cdots)+\left(f \int d^{2} \theta(X+\cdots)+c . c .\right) .
\end{aligned}
$$

- D-term breaking: parametrize $V=\frac{x \bar{x}}{D^{2} X}+\frac{x \bar{x}}{\bar{D}^{2} \bar{X}}+\cdots$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{4}\left(\int d^{2} \theta W^{2}+\text { c.c. }\right)+\xi \int d^{4} \theta V \\
& =\int d^{4} \theta(X \bar{X}+\cdots)-\frac{\sqrt{2} \xi}{4}\left(\int d^{2} \theta(X+\cdots)+c . c .\right) .
\end{aligned}
$$

- The procedure works also in the mixed F-term and D-term case.

Conclusion

- Constrained superfields describe non-linear SUSY.
- In global SUSY $X^{2}=0$ and $X \bar{X} Q=0$ cover the more general case.
- Systematic procedure to build any desired model with broken SUSY.

Future directions:

- Extended SUSY [NC, Dall'Agata, Farakos '16].
- Matter couplings in SUGRA and Inflationary models. (work in progress)

Thank you for your attention!

Extra

F-term breaking [NC, Dall'Agata, Farakos '17]

- Break SUSY with a chiral superfield Φ and parametrize it in the UV-independent manner

$$
\Phi=X+S
$$

using the constrained superfields

$$
\begin{array}{rll}
X^{2}=0 & \text { Goldstino, } \\
\bar{X} D_{\alpha} S=0 & \text { Sgoldstino }
\end{array}
$$

- Equivalently in components

$$
\begin{aligned}
& A^{\Phi}=\frac{G^{2}}{2 F}+s, \\
& \chi^{\Phi}=G+2 i \sigma^{m}\left(\frac{\bar{G}}{\sqrt{2} \bar{F}}\right) \partial_{m} s, \\
& F^{\Phi}=F+\left(\frac{\bar{G}^{2}}{2 \bar{F}^{2}} \partial^{2} s-2 \partial_{n}\left(\frac{\bar{G}}{\sqrt{2} \bar{F}}\right) \bar{\sigma}^{m} \sigma^{n} \frac{\bar{G}}{\sqrt{2} \bar{F}} \partial_{m} s\right) .
\end{aligned}
$$

Example: decoupling the Sgoldstino [NC, Dall'Agata, Farakos '17]

- Consider

$$
\begin{aligned}
\mathcal{L} & =\int d^{4} \theta\left(\Phi \bar{\Phi}-\mu \Phi^{2} \bar{\Phi}^{2}\right)+\left(\int d^{2} \theta f \Phi+\text { c.c. }\right) \\
& =\int d^{4} \theta\left(|X|^{2}+|S|^{2}-\mu\left[4|X|^{2}|S|^{2}+|S|^{4}\right]\right) \\
& +f\left(\int d^{2} \theta(X+S)+\text { c.c. }\right)
\end{aligned}
$$

- In the IR the scalar decouples and we find

$$
s=0 \quad \Longrightarrow \quad S=0
$$

- For more complicated models, the decoupling of S might be more complicated, but this cannot change the presence of $X^{2}=0$.

