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Summary of my talk
 Classically scale invariant model

 Prohibits the mass term
 Introduce a new scalar field coupled to a non-abelian 

gauge field in the hidden sector.
 The Higgs mass term is generated due to the strong 

dynamics.
 Dark matter candidate exists.

 Flavor symmetry makes it stable.
 Strong 1st order EW phase transition



Model
 Strongly interacting Hidden sector 

 SU(𝑁𝑁c) × U 𝑁𝑁f invariant + classically scale invariant

J, Kubo and M. Y.,  arXiv:1505.05971

Dynamical Scale 
Symmetry Breaking 

cf. J. Kubo, K. S. Lim and M. Lindner Phys. Rev. Lett. 113. 091604 



Effective theory
 Low energy effective Lagrangian

 Describe the Dynamical Scale Symmetry Breaking.
 The order parameter is < 𝑆𝑆†𝑆𝑆 >

 Assume that the DSSB is more dominant than the scale anomaly.
 Scale invariant Lagrangian.
 𝜆𝜆𝑆𝑆, 𝜆𝜆′𝑆𝑆 and 𝜆𝜆𝐻𝐻𝑆𝑆: effective coupling constants.

 which contain the quantum effects of hidden gluon. 
 Renormalizable.
 Analyzed by the mean-field approx. (non-perturbative method).



Dark matter candidate is 
 The excitation fields from the vacuum < 𝑆𝑆†𝑆𝑆 >

 Assume the unbroken U(𝑁𝑁f) flavor symmetry:

 c.f. chiral condensate

 Lagrangian

Forbidden by flavor symmetry 
𝜙𝜙𝛼𝛼 is stable.



𝜎𝜎SI vs. 𝑚𝑚DM



EW Baryogenesis scenario
 Sakharov conditions

1. Baryon number violation
2. C-symmetry and CP-symmetry violation
3. Interactions out of thermal equilibrium.

 Electroweak strong first-order phase transition

The SM cannot satisfy this condition



Scale transition is strong 1st order.
J, Kubo and M. Y.,  PTEP 2015 093B01 (arXiv:1506.06460)



Without dark matter case: 𝑁𝑁f = 1
EW phase transition becomes strong 1st order

EW-PT is triggered by SS-PT 



With dark matter case: 𝑁𝑁f = 2
EW phase transition becomes weak 1st order



Summary 
 We suggested a new model based on classically 

scale invariance.
 Strongly interacting hidden sector with the scalar field
 Explain the mechanism of generation of “scale”
 Dynamical Scale Symmetry Breaking < 𝑆𝑆†𝑆𝑆 >≠ 0
 The EW symmetry breaking < ℎ >≠ 0

“Scalegenesis” is realized!
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Prospects
 The impacts of higher order operators
 More precise analysis is needed.

 Lattice simulation
 Why is the scale transition 1st order?
 Is the hidden sector UV complete?

 Working with H. Goto and H. Kawauchi
 C and CP violation



Appendix



Hierarchy problem 
 Nothing between ΛEW and Λpl?

 ΛEW~𝒪𝒪 102 GeV ⇔ Λpl ~𝒪𝒪 1019 GeV

 Fine-tuning problem

 Fermion and gauge field have not the problem.
 Gauge symmetry:

 Chiral symmetry:

(102 GeV)2 = (1019 GeV)2 − (1019 GeV)2



Argument by Bardeen 
 The quadratic divergences are spurious.

 Λ always is subtracted by renormalization.   
 The dimensional regularization automatically subtracts 

the quadratic divergence.

 Only logarithmic terms related to the scale 
anomaly survive in the perturbation.  

W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

The non-zero beta function 𝛽𝛽 ≠ 0



 The RG equation of Higgs mass

 If 𝑚𝑚 Λpl = 0, the mass dose not run.

 If the Higgs field is coupled to a new particle with 
mass 𝑀𝑀,

 If 𝑀𝑀~𝒪𝒪(TeV), fine-tuning is not needed.
 Even if so, the origin of 𝑚𝑚0 with TeV order is unknow.

 If 𝑀𝑀 ≫ TeV, fine-tuning problem appears.

Argument by Bardeen 
W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).



Classical scale invariance
 The classical scale invariance prohibits  𝑚𝑚0.

 Boundary condition: 𝑚𝑚0 = 𝑚𝑚 Λpl = 0

 The origin of observed mass is radiative 
corrections with TeV scale.

 The classical scale invariance is one of 
candidates for the solution of fine-tuning problem.

How to generate radiative corrections?



Two ways
 Perturbative way

 Coleman-Weinberg 
mechanism

 Scale anomaly 
 e.g. CW potential

 Non-perturbative way
 Strong dynamics
 The mass dynamically

is generated.
 e.g. chiral symmetry 

breaking



Advantages of our model
 The number of parameters is less.
 The mediator is the strongly interacting particle. 

 Observing the hidden sector is easier than other models 
such as the hidden (quark) model. 
 < �𝜓𝜓𝜓𝜓 >→< 𝑆𝑆 >→ 𝑚𝑚𝐻𝐻 →< ℎ >
 < 𝑆𝑆†𝑆𝑆 >→ 𝑚𝑚𝐻𝐻 →< ℎ >

 The DM candidate is CP even.
 c.f. The DM in hidden (quark) QCD is CP odd.

 Strong 1st order of EW phase transition can be 
realized.(will see later)



Effective model

Order parameter

meson

Scale 
invariant

Chiral 
invariant

Comparison 



Strong interaction is difficult…
 It is hard to analytically solve the strongly 

interacting system.
 In QCD, effective model approaches are 

successful.
 e.g. Nambu—Jona-Lasinio (NJL) model for D𝜒𝜒SB

 We formulate an effective theory of our model.



How to formulate?
 An effective model describing dynamical scale 

symmetry breaking (DSSB) 
 Scale invariance is broken by scale anomaly.
 The breaking is only logarithmic.

 The non-perturbative scale breaking due to the 
condensation < 𝑆𝑆†𝑆𝑆 >≠ 0 is dominant.

 Ignore the breaking by scale anomaly.



Effective potential
 The mean-field approximated effective potential

 Integrate out 𝜒𝜒 (Gauss integral) 

 Solving the gap equations

Tr log
MS scheme



Input & free parameters
 Input 

 Higgs mass
 EW vacuum
 DM relic abundance 

 7 free parameters.



Where is the vacuum?
 Minimum of 𝑉𝑉MFA; Solving gap equations:

 Three solutions:
i. < 𝑆𝑆𝑖𝑖𝑎𝑎 >≠ 0, < 𝑀𝑀2 >= 0,𝐺𝐺 = 0
ii. < 𝑆𝑆𝑖𝑖𝑎𝑎 >= 0, < 𝑀𝑀2 >= 0
iii. < 𝑆𝑆𝑖𝑖𝑎𝑎 >= 0, < 𝑀𝑀2 >≠ 0,𝐺𝐺 > 0

The solution (iii) is suitable.



 The vacuum of Higgs

 The scalar condensate

 Constituent scalar mass

Solutions



Summary so far 

Planck 

TeV Dynamical scale symmetry breaking

Electroweak symmetry breaking

Scale invariant standard model & hidden sector

Described by the effective model



How to evaluate physical values?
 Mean-field approximation (MFA)

 Many body system is reduced to 1 body system.
 Methods:
1. Introduce a “BCS” vacuum         and a mean field: 

2. Apply the following replacements to ℒeff

3. We obtain 

Review: T. Hatsuda and T. Kunihiro, Phys. Rep. 247 221 (1994)

Normal ordering



Mean-field approximation
 Bogoliubov-Valatin vacuum

 Wick contractions 



Mean-field approximation
 Lagrangian

 Constituent scalar mass 



Effective potential



Mass of dark matter
 Mass = a pole of two point function

 Inverse two point function of 𝜙𝜙𝛼𝛼 (dark matter)

 Find zero



 Decay into Higgs through 𝑆𝑆 loop

 Coannihilation

Dark matter candidate is 

Forbidden by flavor symmetry 



Coannahilation



Velocity averaged annihilation 
cross section



Dark matter candidate is 
 The excitation fields from the vacuum < 𝑆𝑆†𝑆𝑆 >

 Assume the unbroken U(𝑁𝑁f) flavor symmetry:

 Mean-field Lagrangian (before integrating 𝑆𝑆)



Direct detection
 Scattering off the Nuclei

 Spin independent cross section

𝑚𝑚𝑁𝑁: nucleon mass
�̂�𝑟: nucleonic matrix element

Inverse two-point function



𝜎𝜎SI



Dark matter relic abundance
 DM relic abundance

 Entropy density

 Critical density/Hubble parameter

 DM number density



At finite temperature
 Momentum integral

 Matsubara frequency



Effective potential
 There are four components.

Zero temp. part

Finite temp. part

All SM particles

Summation of thermal mass
(remove the IR divergence)

・
・

・

・
・

・



Phase transition
 𝑉𝑉eff at zero temperature

 𝑉𝑉eff at critical temperature 𝑇𝑇𝑐𝑐EW(EWPT)

 𝑉𝑉eff at critical temperature 𝑇𝑇𝑐𝑐SS (SSPT)



Scale transition is strong 1st order.
J, Kubo and M. Y.,  PTEP 2015 093B01 (arXiv:1506.06460)



Difference between two cases
 The Higgs portal is important

 Need more precisely analysis

EW-PT is triggered.

Not enough to trigger
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