Electroweak and Dark matter scalegenesis from a bilinear scalar condensate

Masatoshi Yamada (Kanazawa University)

Collaborator: Jisuke Kubo (Kanazawa University)

Based on

J, Kubo and **M. Y.**, arXiv:1505.05971

J, Kubo and M. Y., PTEP 2015 093B01 (arXiv:1506.06460)

Scalars2015@University of Warsaw

Summary of my talk

Classically scale invariant model

- Prohibits the mass term
- Introduce a new scalar field coupled to a non-abelian gauge field in the hidden sector.
- The Higgs mass term is generated due to the strong dynamics.
- Dark matter candidate exists.
 - Flavor symmetry makes it stable.
- □ Strong 1st order EW phase transition

Model

cf. J. Kubo, K. S. Lim and M. Lindner Phys. Rev. Lett. 113. 091604

Strongly interacting Hidden sector

SU(N_c) × U(N_f) invariant + classically scale invariant

Effective theory

Low energy effective Lagrangian

$$\mathcal{L}_{\text{eff}} = ([\partial_{\mu}S_i]^{\dagger}\partial^{\mu}S_i) + \lambda_{HS}(S_i^{\dagger}S_i)H^{\dagger}H$$
$$-\lambda_S(S_i^{\dagger}S_i)(S_j^{\dagger}S_j) - \lambda'_S(S_i^{\dagger}S_j)(S_j^{\dagger}S_i)$$

Describe the Dynamical Scale Symmetry Breaking.

• The order parameter is $\langle S^{\dagger}S \rangle$

- Assume that the DSSB is more dominant than the scale anomaly.
- Scale invariant Lagrangian.
- λ_S, λ'_S and λ_{HS} : effective coupling constants.

which contain the quantum effects of hidden gluon.

- Renormalizable.
- Analyzed by the mean-field approx. (non-perturbative method).

Dark matter candidate is ϕ^{α}

- \square The excitation fields from the vacuum $< S^{\dagger}S >$
 - Assume the unbroken U(N_f) flavor symmetry: $\langle \Omega | (S_i^{\dagger} S_j) | \Omega \rangle = f_0 \delta_{ij} + \delta_{ij} Z_{\sigma}^{\frac{1}{2}} \sigma + t_{ji}^{\alpha} Z_{\phi}^{\frac{1}{2}} \phi^{\alpha}$
 - c.f. chiral condensate

$$\langle \Omega | \bar{\psi}_i (1 - \gamma^5) \psi_j | \Omega \rangle = f_0 \delta_{ij} + \delta_{ij} Z_{\sigma}^{\frac{1}{2}} \sigma + t_{ji}^{\alpha} Z_{\pi}^{\frac{1}{2}} \pi^{\alpha}$$

Lagrangian

Forbidden by flavor symmetry

 ϕ^{α} is stable.

EW Baryogenesis scenario

Sakharov conditions

- 1. Baryon number violation
- 2. C-symmetry and CP-symmetry violation
- 3. Interactions out of thermal equilibrium.
- Electroweak strong first-order phase transition

 $V_{\rm eff}$

 $T = T_c$

$$\frac{\langle h \rangle}{T_c} \gtrsim 1$$

The SM cannot satisfy this condition

Scale transition is strong 1st order.

J, Kubo and M.Y., PTEP 2015 093B01 (arXiv:1506.06460)

Without dark matter case: $N_f = 1$ EW phase transition becomes strong 1st order

With dark matter case: $N_f = 2$ EW phase transition becomes weak 1st order

 $\langle h \rangle = 246 \text{ GeV}, \ m_{\rm H} = 126 \text{ GeV}, \ \Omega \hat{h}^2 \sim 0.12$ $N_{\rm C} = 6$

Summary

- We suggested a new model based on classically scale invariance.
 - Strongly interacting hidden sector with the scalar field
 - Explain the mechanism of generation of "scale"
 - Dynamical Scale Symmetry Breaking $< S^{\dagger}S > \neq 0$
 - The EW symmetry breaking $< h > \neq 0$

"Scalegenesis" is realized!

Summary

- We suggested a new model based on classically scale invariance.
 - Strongly interacting hidden sector with the scalar field
 - Explain the mechanism of generation of "scale"
 - Dynamical Scale Symmetry Breaking $< S^{\dagger}S > \neq 0$
 - The EW symmetry breaking $< h > \neq 0$

"Scalegenesis" is realized!

- Dark matter candidate exists.
- The EW 1st order phase transition

Prospects

- The impacts of higher order operators
- More precise analysis is needed.
 - Lattice simulation
- □ Why is the scale transition 1st order?
- □ Is the hidden sector UV complete?
 - Working with H. Goto and H. Kawauchi
- C and CP violation

Appendix

Hierarchy problem

D Nothing between Λ_{EW} and Λ_{pl} ?

• $\Lambda_{\rm EW} \sim \mathcal{O}(10^2) \, {\rm GeV} \iff \Lambda_{\rm pl} \sim \mathcal{O}(10^{19}) \, {\rm GeV}$

Fine-tuning problem

$$m_R^2 = m_0^2 - \left(\frac{\lambda}{16\pi^2} + \cdots\right) \Lambda_{\rm pl}^2$$
$$10^2 \,\,{\rm GeV})^2 = (10^{19} \,\,{\rm GeV})^2 - (10^{19} \,\,{\rm GeV})^2$$

Fermion and gauge field have not the problem.

Gauge symmetry:

$$m_0^2 A_\mu A^\mu$$

 $m_Z^2 \propto \langle h \rangle^2 \sim \Lambda_{\rm EW}^2$

Chiral symmetry:

 $m_q^2 \propto \langle \bar{\psi}\psi\rangle \sim \Lambda_{\rm QCD}^2$

Argument by Bardeen

W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

- The quadratic divergences are spurious.
 - Λ always is subtracted by renormalization.
 - The dimensional regularization automatically subtracts the quadratic divergence.

Only logarithmic terms related to the scale anomaly survive in the perturbation.

Argument by Bardeen

W.A. Bardeen, On naturalness in the standard model, **FERMILAB-CONF-95-391** (1995).

$$\frac{dm^2}{d\log\mu} = \frac{m^2}{16\pi^2} \left(12\lambda + 6y_t^2 - \frac{9}{2}g^2 - \frac{3}{2}g_1^2 \right)$$

• If $m(\Lambda_{\rm pl}) = 0$, the mass dose not run.

□ If the Higgs field is coupled to a new particle with mass M, $2 = -\frac{\lambda'}{2} + \frac{\lambda'}{2} + \frac{\mu^2}{2} + \frac{\lambda'}{2} + \frac{\lambda$

$$m_R^2 = m_0^2 + \frac{\chi}{16\pi^2} M^2 \log\left(\frac{\mu}{M^2}\right) + \cdots$$

If *M*~O(TeV), fine-tuning is not needed.
 □ Even if so, the origin of m₀ with TeV order is unknow.
 If *M* ≫ TeV, fine-tuning problem appears.

Classical scale invariance

□ The classical scale invariance prohibits m_0 .

• Boundary condition: $m_0 = m(\Lambda_{pl}) = 0$

The origin of observed mass is radiative corrections with TeV scale.

$$m_R^2 = \frac{\lambda'}{16\pi^2} M^2 \log\left(\frac{\mu^2}{M^2}\right)$$

The classical scale invariance is one of candidates for the solution of fine-tuning problem.

How to generate radiative corrections?

Two ways

- Perturbative way
 - Coleman-Weinberg mechanism
 - Scale anomaly
 - <u>e.g.</u> CW potential

Non-perturbative way

- Strong dynamics
- The mass dynamically is generated.
- e.g. chiral symmetry breaking

Advantages of our model

- The number of parameters is less.
- The mediator is the strongly interacting particle.
 - Observing the hidden sector is easier than other models such as the hidden (quark) model.

$$\Box < \bar{\psi}\psi > \rightarrow < S > \rightarrow m_H \rightarrow < h >$$

 $\Box < S^{\dagger}S > \to m_H \to < h >$

The DM candidate is CP even.

c.f. The DM in hidden (quark) QCD is CP odd.

Strong 1st order of EW phase transition can be realized.(will see later)

Strong interaction is difficult...

- It is hard to analytically solve the strongly interacting system.
- In QCD, effective model approaches are successful.
 - e.g. Nambu—Jona-Lasinio (NJL) model for $D\chi SB$
- □ We formulate an effective theory of our model.

How to formulate?

- An effective model describing dynamical scale symmetry breaking (DSSB)
- Scale invariance is broken by scale anomaly.
- □ The breaking is only logarithmic.
 - The non-perturbative scale breaking due to the condensation $\langle S^{\dagger}S \rangle \neq 0$ is dominant.
 - Ignore the breaking by scale anomaly.

Effective potential

The mean-field approximated effective potential Integrate out χ (Gauss integral) $S_i \to S_i + \chi_i$ $V_{\rm MFA} = M^2 (S_i^{\dagger} S_i) + \lambda_{\rm H} (H^{\dagger} H)^2$ $-N_{\rm f}(N_{\rm f}\lambda_S + \lambda'_S)f^2 + \frac{N_{\rm f}N_{\rm c}}{32\pi^2}M^4\ln\frac{M^2}{\Lambda_H^2}$ $+ \lambda'_S)f - \lambda_{HS}H^{\dagger}H \qquad {\rm Tr}\log\left(\chi\right)$ $M^2 = 2(N_{\rm f}\lambda_S + \lambda_S')f - \lambda_{HS}H^{\dagger}H$

Solving the gap equations

$$\langle S \rangle = 0, \quad \langle f \rangle \neq 0, \quad \langle H \rangle \neq 0$$

Input & free parameters

Input

- Higgs mass
- EW vacuum
- DM relic abundance

 $m_{\rm H} = 126 \ {\rm GeV}$ $\langle h \rangle = 246 \ {\rm GeV}$ $\Omega \hat{h}^2 \sim 0.12$

□ 7 free parameters.

 $\lambda_S \qquad \lambda'_S \qquad \lambda_{HS} \qquad \lambda_H$ $N_{\rm f} \qquad N_{\rm c} \qquad \Lambda_H$

Where is the vacuum?

D Minimum of V_{MFA} ; Solving gap equations:

$$\frac{\partial}{\partial S_i^a} V_{\rm MFA} = 0, \quad \frac{\partial}{\partial f} V_{\rm MFA} = 0, \quad \frac{\partial}{\partial H} V_{\rm MFA} = 0$$

Three solutions:

i.
$$< S_i^a > \neq 0, < M^2 > = 0, G = 0$$

ii.
$$\langle S_i^a \rangle = 0, \langle M^2 \rangle = 0$$
 \longrightarrow $\langle V_{\text{eff}} \rangle = 0$

iii. $\langle S_i^a \rangle = 0, \langle M^2 \rangle \neq 0, G > 0 \Longrightarrow \langle V_{\text{eff}} \rangle < 0$

$$M^{2} = 2(N_{\rm f}\lambda_{S} + \lambda_{S}')f - \lambda_{HS}H^{\dagger}H$$
$$G = 4N_{\rm f}\lambda_{H}\lambda_{S} - N_{\rm f}\lambda_{HS}^{2} + 4\lambda_{H}\lambda_{S}'$$

The solution (iii) is suitable.

Solutions

The vacuum of Higgs

$$\langle h \rangle = \frac{N_{\rm f} \lambda_{HS}}{G} \Lambda_H^2 \exp\left(\frac{32\pi^2 \lambda_H}{N_c G} - \frac{1}{2}\right)$$

The scalar condensate

$$\langle S^{\dagger}S \rangle = \langle f \rangle = \frac{2\lambda_H}{G} \Lambda_H^2 \exp\left(\frac{32\pi^2\lambda_H}{N_c G} - \frac{1}{2}\right)$$

Constituent scalar mass

$$M^2 = \Lambda_H^2 \exp\left(\frac{32\pi^2 \lambda_H}{N_c G} - \frac{1}{2}\right)$$

 $G = 4N_{\rm f}\lambda_H\lambda_S - N_{\rm f}\lambda_{HS}^2 + 4\lambda_H\lambda_S'$

Summary so far

How to evaluate physical values?

Review: T. Hatsuda and T. Kunihiro, Phys. Rep. 247 221 (1994)

 $\langle \Omega | : \mathcal{L}_{\text{Int}} : | \Omega \rangle = 0$

Mean-field approximation (MFA)

- Many body system is reduced to 1 body system.
- Methods:
- 1. Introduce a "BCS" vacuum $|\Omega\rangle$ and a mean field:

$$f_{ij} \equiv \langle \Omega | S_i^{\dagger} S_j | \Omega \rangle$$

2. Apply the following replacements to \mathcal{L}_{eff}

$$S_i^{\dagger}S_j)(S_j^{\dagger}S_i) \rightarrow : (S_i^{\dagger}S_j)(S_j^{\dagger}S_i) :+ 2f_{ij}(S_j^{\dagger}S_i) - |f_{ij}|^2$$

Normal ordering

3. We obtain

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{MFA}} + : \mathcal{L}_{\mathrm{Int}} :$$

Mean-field approximation

 \square Bogoliubov-Valatin vacuum $|\Omega\rangle$

$$\langle \Omega | (S_i^{\dagger} S_j) | \Omega \rangle = f_0 \delta_{ij} + Z_{\sigma}^{1/2} \delta_{ij} \sigma + Z_{\phi}^{1/2} t_{ji}^{\alpha} \phi^{\alpha}$$

$$\langle S_i S_j \rangle = \left\langle \sum_{a=1}^{N_c} S_i^a S_j^a \right\rangle$$

Wick contractions

$$(S_i^{\dagger}S_j) \coloneqq (S_i^{\dagger}S_j) : +f_{ij}$$

$$(S_i^{\dagger}S_j)(S_jS_i) \coloneqq (S_i^{\dagger}S_j)(S_j^{\dagger}S_i) : +2f_{ij}(S_j^{\dagger}S_i) - |f_{ij}|^2$$

Mean-field approximation

Lagrangian
$$\mathcal{L}_{eff} = \mathcal{L}_{MFA} + \mathcal{L}_I$$
 $\langle \Omega | \mathcal{L}_I | \Omega \rangle = 0$

$$\mathcal{L}_{\text{MFA}} = (\partial^{\mu} S^{\dagger} \partial_{\mu} S) - M^{2} (S_{i}^{\dagger} S_{j}) + N_{f} (N_{f} \lambda_{S} + \lambda_{S}') Z_{\sigma} \sigma^{2} + \frac{\lambda_{S}'}{2} Z_{\phi} \phi^{\alpha} \phi^{\alpha} - 2 (N_{f} \lambda_{S} + \lambda_{S}') Z_{\sigma}^{1/2} \sigma (S_{i}^{\dagger} S_{i}) - 2 \lambda_{S}' Z_{\phi}^{1/2} (S_{i}^{\dagger} t_{ij}^{\alpha} \phi^{\alpha} S_{j}) + \lambda_{HS} (S_{i}^{\dagger} S_{i}) H^{\dagger} H - \lambda_{H} (H^{\dagger} H)^{2}$$

Constituent scalar mass

$$M^2 = 2(N_f \lambda_S + \lambda'_S)f - \lambda_{HS} H^{\dagger} H$$

Effective potential

$$V_{\rm MFA} = M^2 (S_i^{\dagger} S_i) + \lambda_H (H^{\dagger} H)^2 - N_f (N_f \lambda_S + \lambda'_S) f^2 + \frac{N_c N_f}{32\pi^2} M^4 \log \frac{M^2}{\Lambda_H^2}$$

$$H = \begin{pmatrix} \chi^+ \\ \langle h \rangle + h + i \chi^0 \end{pmatrix}$$

Mass of dark matter

Mass = a pole of two point function

• Inverse two point function of ϕ^{α} (dark matter)

$$\Gamma^{\alpha\beta}_{\phi\phi}(p^2) = \frac{p}{\phi^{\alpha} \phi^{\beta}} + \frac{p}{\phi^{\alpha}} \left(\sum_{j=1}^{p} \phi^{\beta} - \frac{p}{\phi^{\beta}} \right) = \delta^{\alpha\beta} \left[Z_{\phi} \lambda'_{S} + Z_{\phi} \lambda'^{2}_{S} N_{c} \Gamma(p^{2}) \right]$$

$$\Gamma^{\alpha\beta}_{\phi\phi}(p^2 = m_{\rm DM}^2) = 0$$

Dark matter candidate is ϕ^{α}

Decay into Higgs through S loop

Forbidden by flavor symmetry

Coannihilation

Coannahilation

+ crosses

Velocity averaged annihilation cross section

$$\langle v\sigma \rangle = \frac{1}{32\pi m_{\rm DM}^3} \sum_{I=W,Z,t,h} (m_{\rm DM}^2 - m_I^2)^{1/2} a_I + \mathcal{O}(v^2)$$

$$a_{W(Z)} = 4(2) [\operatorname{Re}(\kappa_{s})]^{2} \Delta_{h}^{2} m_{W(Z)}^{4} \left(3 + 4 \frac{m_{\mathrm{DM}}^{4}}{m_{W(Z)}^{4}} - 4 \frac{m_{\mathrm{DM}}^{2}}{m_{W(Z)}^{2}} \right)$$
$$a_{t} = 24 [\operatorname{Re}(\kappa_{s})]^{2} \Delta_{h}^{2} m_{t}^{2} (m_{\mathrm{DM}}^{2} - m_{t}^{2})$$
$$a_{h} = [\operatorname{Re}(\kappa_{s})]^{2} \left(1 + 24\lambda_{H} \Delta_{h} \frac{m_{W}^{2}}{g^{2}} \right)^{2}$$

$$\Delta_h = (4m_{\rm DM}^2 - m_h^2)^{-1}$$

Dark matter candidate is ϕ^{α}

- The excitation fields from the vacuum $\langle S^{\dagger}S \rangle$ ■ Assume the unbroken U(N_f) flavor symmetry: $\langle \Omega | (S_i^{\dagger}S_j) | \Omega \rangle = f_0 \delta_{ij} + \delta_{ij} Z_{\sigma}^{\frac{1}{2}} \sigma + t_{ji}^{\alpha} Z_{\sigma}^{\frac{1}{2}} \phi^{\alpha}$
- Mean-field Lagrangian (before integrating S)

$$\mathcal{L}'_{\rm MFA} = (\partial_{\mu}S_i)^2 - M^2(S_i^{\dagger}S_i) + N_{\rm f}(N_{\rm f}\lambda_S + \lambda'_S)Z_{\sigma}\sigma^2 + \frac{\lambda'_S}{2}Z_{\phi}(\phi^{\alpha})^2$$

$$-2(N_{\rm f}\lambda_S + \lambda'_S)Z_{\sigma}^{1/2} \sigma(S_i^{\dagger}S_i) - 2\lambda'_S Z_{\phi}^{1/2} (S_i^{\dagger}t_{ij}^{\alpha}\phi^{\alpha}S_j)$$

 $+\lambda_{HS}(S_i^{\dagger}S_i)H^{\dagger}H - \lambda_H(H^{\dagger}H)^2$

Direct detection

Scattering off the Nuclei

$\sigma_{ m SI}$

$$\sigma_{\rm SI} = \frac{1}{4\pi} \left(\frac{\kappa_t \hat{r} m_N^2}{m_{\rm DM} m_h^2} \right)^2 \left(\frac{m_{\rm DM}}{m_N + m_{\rm DM}} \right)^2$$

 $\hat{r} \sim 0.3$

Dark matter relic abundance

DM relic abundance

$$\Omega \hat{h}^2 = (N_{\rm f}^2 - 1) \frac{Y_\infty s_0 m_{\rm DM}}{\rho_c / \hat{h}^2}$$

- Entropy density $s_0 = 2890 \ {\rm cm}^{-3}$
- Critical density/Hubble parameter

$$\rho_c/\hat{h}^2 = 1.05 \times 10^{-5} \text{ GeV cm}^{-3}$$

 $g_* = 106.75 + N_{\rm f}^2 - 1$

$$\frac{dY}{dx} = -0.264g_*^{1/2} \frac{m_{\rm DM}M_{\rm pl}}{x^2} \langle \sigma v \rangle (Y^2 - \bar{Y}^2)$$

At finite temperature

Momentum integral

$$\int \frac{d^4p}{(2\pi)^4} f(p_0, \vec{p}) \quad \Longrightarrow \quad T \sum_{n=-\infty}^{\infty} \int \frac{d^3p}{(2\pi)^3} f(\omega_n, \vec{p})$$

Matsubara frequency

$$\omega_n = \begin{cases} 2n\pi T & \text{(boson loop)}\\ (2n+1)\pi T & \text{(fermion loop)} \end{cases}$$

Effective potential

□ There are four components.

$$\begin{split} V_{\mathrm{eff}}(f,h;T) = & \\ V_{\mathrm{MFA}}(f,h) + V_{\mathrm{CW}}(h) & \quad \text{Zero temp. part} \\ & + V_{\mathrm{FT}}(f,h;T) + V_{\mathrm{RING}}(h;T) & \quad \text{Finite temp. part} \\ & \\ T \sum_{n=-\infty}^{\infty} \int \frac{d^3p}{(2\pi)^3} \Big[\underbrace{(\)}_{S} + \underbrace{(\)}_{\mathrm{All SM particles}} \Big] & \quad \text{Summation of thermal mass} \\ & \quad (remove the IR divergence) \\ & \quad (\underbrace{(\)}_{S} + \underbrace{(\)}_{S} +$$

Phase transition

 \Box V_{eff} at zero temperature

$$V_{\text{eff}}(f,h;T=0) = V_{\text{MFA}}(f,h) + V_{\text{CW}}(h)$$
$$(h) = 246 \text{ GeV} \quad \langle f \rangle \neq 0$$
$$m_{\text{H}} = 126 \text{ GeV}$$

 \Box V_{eff} at critical temperature $T_c^{EW}(EWPT)$

$$V_{\rm eff}(f,h;T=T_c^{\rm EW}) \longrightarrow \langle h \rangle = 0$$

 \Box V_{eff} at critical temperature T_c^{SS} (SSPT)

$$V_{\rm eff}(f,h;T=T_c^{\rm SS}) \longrightarrow \langle f \rangle = \langle S^{\dagger}S \rangle = 0$$

Scale transition is strong 1st order.

Difference between two cases

□ The Higgs portal is important $-\lambda_{HS}(S^{\dagger}S)H^{\dagger}H$

Need more precisely analysis