SUSY with R-symmetry: confronting EWPO and LHC constraints

arXiv:1410.4791

P. Dießner[†], J. Kalinowski[‡], Wojciech Kotlarski[‡], D. Stöckinger[†]

Warsaw, 20 October 2014

[†]TU-Dresden, [‡]University of Warsaw

Plan of the talk

- Motivation
- R-symmetric SUSY
 - **u** what is an **R**-symmetry
 - $\square \quad different possible R-symmetric models \rightarrow MRSSM$
- Strongly interacting sector of the MRSSM
- The electroweak sector
 - Higgs sector
 - Constraints: W boson mass, STU parameters, Higgs searches and exclusions, vacum stability, flavour physics
 - Conclusion and outlook

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 700 GeV stops (≥ 5 TeV if we neglect mixing)
 - **n** flavour physics suggests even larger SUSY scale (within the MSSM)
- If gluinos are found, important question: are they Dirac or Majorana particles?

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 700 GeV stops (≥ 5 TeV if we neglect mixing)
 - **n** flavour physics suggests even larger SUSY scale (within the MSSM)
 - If gluinos are found, important question: are they Dirac or Majorana particles?

Motivates us to go beyond the MSSM

Pros of the MRSSM

- ĭ it ameliorates the flavour problem of the MSSM Kribs, Poppitz, Weiner (2008)
- Dirac gluinos relax experimental limits on squark masses
- ☑ Dirac gaugino masses are supersoft Fox, Nelson, Weiner (2006)
- \blacksquare gives correct W and Higgs masses at (possibly very) light stop masses **this talk**
- interesting LHC phenomenology distinct from the MSSM
- Dirac type neutralino as a candidate for dark matter
 Belanger, Benakli, Goodsell, Moura, Pukhov (2009), Buckley, Hooper, Kumar (2013)
- ✓ gauge sector has N=2 structure N=2 SUSY as possible UV completion (although might be hard to realise in practice)

R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

- Lagrangian invariance
 - **G** Kähler potential invariant if **R**-charge of vector super field is 0
 - **R**-charge of the superpotential must be 2
 - □ soft-breaking terms must have R-charge 0

R-symmetry at the low scale

- Nelson-Seiberg theorem connects SUSY breaking with R-symmetry breaking Nelson, Seiberg (1994); Kang, Li, Sung (2013)
- but it does not state that there are no models with SUSY-breaking minima that preserve R-symmetry Intriligator, Seiberg, Shih (2007)
 - Various phenomenologically viable models of this type have been constructed *e.g.* De Lope Amigo, Blechman, Fox, Poppitz (2009)
- Here we'll not consider model building but focus on focus on phenomenological analysis of low energy theory

Low-energy R-symmetry realisation

R charges of component fields								
			scalar	vector	fermionic			
	vector superfield	0	-	0	1			
	chiral superfield	Q	Q	-	Q-1			

- freedom in the choice of chiral superfield charge
- we choose SM fields to have $R=0 \rightarrow$ Higgs superfields $Q_R=0$, lepton and quark superfields have $Q_R=+1$
- with the above assignment R-symmetry forbids
 - $\mathbf{\Box} \quad \mu \hat{H}_u \hat{H}_d$
 - $\label{eq:linear_constraint} \mathbf{\Box} \quad \lambda \hat{E} \hat{L} \hat{L}, \kappa \hat{U} \hat{D} \hat{D}, e \hat{H} \hat{L}$
 - soft susy breaking Majorana masses and trilinear scalar couplings
 - flavor problem ameliorated but now gauginos and higgsinos are masses → possible solution - Dirac gauginos

One way to fix it: <u>Dirac masses</u>								
Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039								
			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$		
	Singlet	Ŝ	1	1	0	0		
Additional fields:	Triplet	Ť	1	3	0	0		
	Octet	Ô	8	1	0	0		
	R-Higgses	Â _u	1	2	-1/2	2		
		Â _d	1	2	1/2	2		

other realisations:

Davies, March-Russell, McCullough (2011) Lee, Raby, Ratz, Schieren, Schmidt-Hoberg, Vaudrevange (2011) Frugiuele, Gregoire (2012)

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

- α μ-type terms
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential
- MSSM-like Yukawa terms
- Allowed soft SUSY-breaking terms
 - \Box conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ H_d^0H_u^0) + h.c.$
 - **D** Dirac mass terms for gauginos $M^D \tilde{g}\tilde{g}'$
 - \square scalar soft masses $m^2 |\Phi|^2$

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$

+ $\Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$
- $Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$

- \Box µ-type terms \bigcirc
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential
- MSSM-like Yukawa terms
- Allowed soft SUSY-breaking terms
 - \Box conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ H_d^0H_u^0) + h.c.$
 - \Box Dirac mass terms for gauginos $M^D \, \tilde{g} \tilde{g}'$
 - \square scalar soft masses $m^2 |\Phi|^2$

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u \qquad \longleftarrow$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

- α μ-type terms
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential \bigcirc
- MSSM-like Yukawa terms
- Allowed soft SUSY-breaking terms
 - \Box conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ H_d^0H_u^0) + h.c.$
 - \Box Dirac mass terms for gauginos $M^D \tilde{g}\tilde{g}'$
 - \square scalar soft masses $m^2 |\Phi|^2$

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

- α μ-type terms
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential
- MSSM-like Yukawa terms O
- Allowed soft SUSY-breaking terms
 - $\Box \quad \text{conventional MSSM} \quad B_{\mu} \text{term:} V \ni B_{\mu} (H_d^- H_u^+ H_d^0 H_u^0) + \text{h.c.}$
 - \Box Dirac mass terms for gauginos $M^D \, \tilde{g} \tilde{g}'$
 - \square scalar soft masses $m^2 |\Phi|^2$

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

- α μ-type terms
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential
- MSSM-like Yukawa terms
- Allowed soft SUSY-breaking terms
 - \Box conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ H_d^0H_u^0) + h.c.$
 - \Box Dirac mass terms for gauginos $M^D \, \tilde{g} \tilde{g}'$
 - \square scalar soft masses $m^2 |\Phi|^2$

	Higgs			R-Higgs			
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

(scalar o	components	of) H _u and H	I _d mix with \$	S and T			
	Higgs				R-H	liggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

Winos and Higgsinos mix with	h R-Higgsinos and	Triplinos
------------------------------	-------------------	-----------

	Higgs				R-H	liggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

states not present in the MSSM

	Higgs				R-H			
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon	
MSSM	2	1	1	2	0	0	0	
MRSSM	4	3	3	2+2	2	2	1	

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

	Higgs			R-Higgs			
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino	
MSSM	4	1	Majorana fermions
MRSSM	4	1	Dirac fermions

Strongly interacting sector

Squark and gluino production

- New states not present in the MSSM
 - \Box Dirac gluino \tilde{g}^D
 - \Box scalar companion sgluon Θ
- Suppression of squark production

 Enhancement of gluino pair production cross section — stronger exclusion bounds Heikinheimo, Kellerstein and Sanz (2011)

Sgluons@LHC

- Sgluons have R-charge 0
 - can be produced singly and resonantly
 - however, they do not couple directly to SM particles → single gluon production highly suppressed

■ pair production model independent

Netto, Lopez-Val, Mawatari, Plehn, Wigmore (2012)

(a)			$\sqrt{S} = 8 \text{ TeV}$			$\sqrt{S} = 14 \text{ TeV}$		
5 0000F = 5		m_G [GeV]	$\sigma^{ m LO}$ [pb]	$\sigma^{ m NLO}$ [pb]	K	$\sigma^{ m LO}$ [pb]	$\sigma^{ m NLO}$ [pb]	K
		200	2.12×10^{2}	3.36×10^{2}	1.58	9.77×10^{2}	1.48×10^{3}	1.52
9 0000 5	9 5	350	8.16×10^{0}	$1.36 imes 10^{1}$	1.66	$5.44 imes 10^{1}$	$8.46 imes 10^{1}$	1.56
		500	$7.64 imes 10^{-1}$	1.34×10^{0}	1.75	7.14×10^{0}	1.14×10^{1}	1.60
		750	3.40×10^{-2}	6.54×10^{-2}	1.93	$5.56 imes 10^{-1}$	9.29×10^{-1}	1.67
Sec /		1000	2.47×10^{-3}	5.29×10^{-3}	2.15	7.31×10^{-2}	1.28×10^{-1}	1.75
$g \mathscr{S} $ \searrow	$q \sim S$							

roughly 100 events/day

- 4-(gluon) jets or 4-top quarks as a possible experimental signature
- 4-jet searches exclude sgluons with mass lower than ~300 GeV [ATLAS]

Sgluons@LHC — $t\bar{t}t\bar{t}$ signature

- $t\bar{t}t\bar{t}$ production in the SM is quite rare
- we considered event with same-sign muon in association with large hadronic activity main background coming from $t\bar{t}t\bar{t}, t\bar{t}W^{\pm}, t\bar{t}Z$
- we used novel Monte Carlo simulation technic UNLOPS (Unitarized NLO+PS merging) Lönnblad, Prestel (2011, 2012)
- MC validation

 $\sigma(Z/\gamma^*(\rightarrow e^+e^-) + N_{jet}) \text{ [pb]}$

10

 10^{-3} 1.4

1.2

0.8

0.6

MC/Data

 10^{2}

 10^{1}

Sgluons@LHC — $t\bar{t}t\bar{t}$ signature (results)

cross-sections summary @14 TeV LHC

@14 TeV	$t\overline{t}t\overline{t}$	$t\bar{t}W^{\pm}$	$t\bar{t}Z$	1TeV sgluons
$\sigma \cdot br(fb)$	0.3	6+3	6	2.5

- result of our analysis: for 1 TeV sgluons and 300/fb we expect $S/\sqrt{B+1} > 5$ Kalinowski, Kalinowski, Kotlarski (2013)
- the same game was played for 8 TeV showing similar sensitivity as the ATLAS analysis

Electroweak sector

Can MRSSM accommodate both the Higgs and EWPO?

Can MRSSM accommodate both the Higgs and EWPO?

We provide 3 typical benchmark points with $\tan \beta = 3, 10, 40$

Scalar Higgs sector and tree-level analysis

- 4 scalar degrees of freedom $\{h_d, h_u, \Re(S), \Re(T^0)\}$ mix to form 4 physical Higgs bosons
- Approximate formula for the lightest Higgs mass at the tree level

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2\lambda\mu}\right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda\mu\right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

under simplifying assumptions: large m_A^2 , $\lambda = \lambda_u = -\lambda_d$ $\Lambda = \Lambda_u = \Lambda_d$ $\mu = \mu_u = \mu_d$ $v_s \approx v_T \approx 0$

• Tree-level mass of the lightest state always **lower** than in the MSSM due to the mixing with S and T fields.

Lightest Higgs mass — full lloop analysis

large enhancement of tree-level Higgs mass

- \square with ~1 TeV stops and no LR mixing lightest higgs mass too low
- large contributions from new states, mainly Higgs and R-Higgs sectors
- 0.5 TeV stops would work also fine
- effective potential approximation gives higher value

m_W calculation setup

- MRSSM contains a Y=0 Higgs triplet giving tree level contribution to m_W
- Calculation based on Degrassi, Fanchiotti, Sirlin (1990) scheme modified to accommodate non vanishing v_T
- EW-gauge sector is described at tree-level in terms of 4 parameters

$$\{g_1, g_2, v, v_T\} \to \{\alpha_{EM}, G_\mu, m_Z, \hat{v}_T\}$$

Chankowski, Pokorski, Wagner (2007)

Introduce quantity
$$\hat{\rho} = \frac{m_W^2}{m_Z^2 \hat{c}_W^2}$$
, which at tree-level equals $\hat{\rho}_0 = 1 + \frac{4v_T^2}{v^2}$

Express muon decay constant at tree level as

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi\alpha}{2m_W^2 \left(1 - \frac{m_W^2}{\hat{\rho}m_Z^2}\right)}$$

m_W master formula at one-loop

• m_W measured with high precision $m_W = 80.385 \pm 0.015$ GeV

beyond the tree-level there are quantum corrections to the muon decay constant

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \hat{\alpha}}{2m_W^2 \left(1 - \frac{m_W^2}{\hat{\rho}m_Z^2}\right)} \left(1 + \Delta \hat{r}_W\right)$$

solve for m_W

$$m_W^2 = \frac{1}{2} m_Z^2 \hat{\rho} \left[1 + \sqrt{1 - \frac{4\pi \hat{\alpha}}{\sqrt{2} G_\mu m_Z^2 \hat{\rho} (1 - \Delta \hat{r}_W)}} \right]$$

master formula of Degrassi, Fanchiotti, Sirlin (1990)

- $\Delta \hat{r}_W$ contains: "oblique" and vertex- and box-corrections as well as term that translates pole mW to running one
- automatically recovers SM 2-loop reducible contributions

Results for m_W

built in large cancelations between $\Delta \alpha, \Delta \hat{r}_W, \hat{\rho}$

to understand qualitatively the parameter dependence expand in STU

$$m_W = m_W^{\text{ref}} + \frac{\hat{\alpha}m_Z \hat{c}_W}{2(\hat{c}_W^2 - \hat{s}_W^2)} \left(-\frac{S}{2} + \hat{c}_W^2 T + \frac{\hat{c}_W^2 - \hat{s}_W^2}{4\hat{s}_W^2} U \right)$$

additional benefit: STU give also a handle on observables other than mW

			$\tan\beta = 3$	$\tan\beta=10$	$\tan\beta = 40$
for out be		S	0.0097	0.0092	0.0032
	for out benchmark points we find	T	0.090	0.091	0.085
		U	0.00067	0.00065	0.0010

Properties of benchmark points

- 3 distinct parameter points with $\tan \beta = 3, 10, 40$
- W mass within 1σ from measured value $m_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$
- lightest Higgs mass around 125 GeV
- Higgs sectors in agreement with direct measurements and exclusion limits HiggsBounds and HiggsSignals
- due to the lack of A-terms MRSSM is safe as far as colour- and charge-breaking minima are concerned — Casas, Lleyda, Muñoz (1996)
- absolute vacuum stability [disclaimer: within the scope of application of **Vevacious**]
- reasonable TeV range mass spectra

$m_h - m_W$ interdependence for $\tan \beta = 40$

Conclusions and outlook

- We took the low energy model without discussing its UV completion
- Viable realisation of R-symmetric SUSY
- agreement with PEWO and flavour-physics
- stable vacuum
- ✓ LHC ,,friendly" particle spectra
- Still a lot to do
- **D** broader exploration of parameter space
- □ consequences for 14 TeV LHC
- **D** dedicated study of Dark matter

Back-up slides

Benchmark points

	BMP1	BMP2	BMP3	
$\tan\beta$	3	10	40	
B_{μ}	500^{2}	300^{2}	200^{2}	
λ_d,λ_u	1.0, -0.8	1.1, -1.1	0.15, -0.15	
Λ_d,Λ_u	-1.0, -1.2	-1.0, -1.0	-1.0, -1.15	
M^D_B	600	1000	250	
$m_{R_u}^2$	2000^{2}	1000^{2}	1000^{2}	
μ_d, μ_u		400,400		
M_W^D		500		
M_O^D	1500			
m_T^2, m_S^2, m_O^2	$3000^2, 2000^2, 1000^2$			
$m_{Q;1,2}^2, m_{Q;3}^2$	$2500^2, 1000^2$			
$m_{D:1,2}^2, m_{D:3}^2$	$2500^2, 1000^2$			
$m_{U:1,2}^2, m_{U:3}^2$	$2500^2, 1000^2$			
m_L^2, m_E^2	1000^2			
$m_{R_d}^{\overline{2}}$ –	700^{2}			
v_S	5.9	1.3	-0.14	
v_T	-0.33	-0.19	-0.34	
$m_{H_d}^2$	671^2	761^{2}	1158^{2}	
$m_{H_u}^{\overline{2}^a}$	-532^{2}	-544^{2}	-543^{2}	

Particle spectrum for tan $\beta = 3$

Particle spectrum for tan $\beta = 10$

Particle spectrum for tan $\beta = 40$

- Model implemented in **SARAH**
- Numerical analysis done within **SARAH**'s generated **SPheno**-like code
- Cross checked with analytic calculation with FeynArts/FormCalc
- Higgs sector checked with HiggsBounds and HiggsSignals
 - Vacuum stability checked with Vevacious

Effective potential approximation

- Serious problem effective potential is gauge dependent
- Potential is gauge independent at the critical point (Nielsen's identity)
- Other quantities are not

Hiren Patel, MPI-K Particle and Astroparticle Seminar (27.01.2014)

$$\beta_{g_3}^{(1)} = 0$$

$$\beta_{g_3}^{(2)} = \frac{1}{5}g_3^3 \left(11g_1^2 - 20\text{Tr}\left(Y_d Y_d^\dagger\right) - 20\text{Tr}\left(Y_u Y_u^\dagger\right) + 340g_3^2 + 45g_2^2\right)$$